A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Effective data-driven collective variables for free energy calculations from metadynamics of paths. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

A variety of enhanced sampling (ES) methods predict multidimensional free energy landscapes associated with biological and other molecular processes as a function of a few selected collective variables (CVs). The accuracy of these methods is crucially dependent on the ability of the chosen CVs to capture the relevant slow degrees of freedom of the system. For complex processes, finding such CVs is the real challenge. Machine learning (ML) CVs offer, in principle, a solution to handle this problem. However, these methods rely on the availability of high-quality datasets-ideally incorporating information about physical pathways and transition states-which are difficult to access, therefore greatly limiting their domain of application. Here, we demonstrate how these datasets can be generated by means of ES simulations in trajectory space via the metadynamics of paths algorithm. The approach is expected to provide a general and efficient way to generate efficient ML-based CVs for the fast prediction of free energy landscapes in ES simulations. We demonstrate our approach with two numerical examples, a 2D model potential and the isomerization of alanine dipeptide, using deep targeted discriminant analysis as our ML-based CV of choice.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11044970PMC
http://dx.doi.org/10.1093/pnasnexus/pgae159DOI Listing

Publication Analysis

Top Keywords

free energy
12
collective variables
8
metadynamics paths
8
energy landscapes
8
cvs
5
effective data-driven
4
data-driven collective
4
variables free
4
energy calculations
4
calculations metadynamics
4

Similar Publications