Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
This perspective article features the recent work published in this journal on functionalized azobenzene photoswitches, studied by Venkataramani and coworkers [Grewal, S. et al (2024) Photochem. Photobiol., 1-16]. Azobenzene-based photochromic molecules undergo reversible trans-to-cis isomerization under exposure to light. The reverse cis-to-trans isomerization also takes place under thermal conditions in the dark. The study explores how different functional groups at various positions affect the responses of these compounds to light, their thermal stabilities, the isomeric ratios in the photostationary states, and their supramolecular behavior. Results show varied thermal half-lives, influenced by the terminal groups and their positions. Aggregation studies reveal the formation of supramolecular architectures, from microcrystals to gels with these systems. Despite complexities with the large volume of work with 30 different compounds, the research provides insights into designing efficient photochromic supramolecular motifs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/php.13954 | DOI Listing |