Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
5-(-Butyl)-2-hydroxy-1,3-isophthalaldehyde (5-BHI) is a photochromic material susceptible to either excited state proton transfer or excited state intramolecular proton transfer, depending upon the solvent. However, it has also been found to aggregate in the presence of sodium dodecyl sulfate. In this current study, based on the steady-state and time-resolved spectroscopy, supported by crystallography, quantum chemical density functional theory calculation, and molecular dynamics (MD) simulation, we report on the aggregation of this potential single benzene-based emitter (SBBE) in neat solvents as well as solid phase to modulate its photophysics. It has been found that 5-BHI forms mixed aggregates of different orders, owing to the presence of both enolic and tautomeric forms, to yield tunable emission, although the emission intensity is quenched. These findings suggest that the intramolecular hydrogen bonding of 5-BHI not only limits intermolecular interactions but also promotes nonradiative deactivation pathways. Hence, designing and structural engineering, with a focus to suppressing intramolecular hydrogen bonding as well as increasing through space conjugation by replacing the aldehydic moieties with bulky aliphatic or aromatic ketonic groups, can be a plausible approach to yielding improved probes with tunable emission and higher fluorescence quantum yields.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jpcb.4c00258 | DOI Listing |