98%
921
2 minutes
20
Background: Alport syndrome (AS) is a genetic kidney disease caused by a mutation in type IV collagen α3, α4, and α5, which are normally secreted as heterotrimer α345(IV). Nonsense mutation in these genes causes severe AS phenotype. We previously revealed that the exon-skipping approach to remove a nonsense mutation in α5(IV) ameliorated the AS pathology. However, the effect of removing an exon on trimerization is unknown. Here, we assessed the impact of exon deletion on trimerization to evaluate their possible therapeutic applicability and to predict the severity of mutations associated with exon-skipping.
Methods: We produced exon deletion constructs (ΔExon), nonsense, and missense mutants by mutagenesis and evaluated their trimer formation and secretion activities using a nanoluciferase-based assay that we previously developed.
Results: Exon-skipping had differential effects on the trimer secretion of α345(IV). Some ΔExons could form and secrete α345(IV) trimers and had higher activity compared with nonsense mutants. Other ΔExons had low secretion activity, especially for those with exon deletion near the C-terminal end although the intracellular trimerization was normal. No difference was noted in the secretion of missense mutants and their ΔExon counterpart.
Conclusion: Exon skipping is advantageous for nonsense mutants in AS with severe phenotypes and early onset of renal failure but applications may be limited to ΔExons capable of normal trimerization and secretion. This study provides information on α5(IV) exon-skipping for possible therapeutic application and the prediction of the trimer behavior associated with exon-skipping in Alport syndrome.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10157-024-02503-9 | DOI Listing |
Stem Cell Rev Rep
September 2025
Stem Cells and Metabolism Research Program (STEMM), Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, 00014, Finland.
Mutations in Delta Like Non-Canonical Notch Ligand 1 (DLK1), a paternally expressed imprinted gene, underlie central precocious puberty (CPP), yet the mechanism remains unclear. To test the hypothesis that DLK1 plays a role in gonadotropin releasing hormone (GnRH) neuron ontogeny, 75 base pairs were deleted in both alleles of DLK1 exon 3 with CRISPR-Cas9 in human pluripotent stem cells (hPSCs). This line, exhibiting More than 80% loss of DLK1 protein, was differentiated into GnRH neurons by dual SMAD inhibition (dSMADi), FGF8 treatment and Notch inhibition, as previously described, however, it did not exhibit accelerated GNRH1 expression.
View Article and Find Full Text PDFN Engl J Med
September 2025
Division of Medical Oncology, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, South Korea.
Background: Previous results from this phase 3 trial showed that progression-free survival among participants with previously untreated (epidermal growth factor receptor)-mutated advanced non-small-cell lung cancer (NSCLC) was significantly improved with amivantamab-lazertinib as compared with osimertinib. Results of the protocol-specified final overall survival analysis in this trial have not been reported.
Methods: We randomly assigned, in a 2:2:1 ratio, participants with previously untreated -mutated (exon 19 deletion or L858R substitution), locally advanced or metastatic NSCLC to receive amivantamab-lazertinib, osimertinib, or lazertinib.
Vox Sang
September 2025
Pathology and Clinical Governance, Australian Red Cross Lifeblood, Brisbane, Australia.
Background And Objectives: Two prior publications have identified a novel RHD variant in the Australian population with the pattern of single nucleotide variation (SNV) c.186G>T, c.410C>T, c.
View Article and Find Full Text PDFJ Thorac Oncol
July 2025
Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York.
Introduction: TNM staging systems create prognostic categories by anatomic extent of disease. Whether therapeutically important molecular alterations in NSCLC augment the prognostic information of TNM staging is unclear. To study this, we analyzed molecular data from the ninth edition of the lung cancer staging system.
View Article and Find Full Text PDFDev Dyn
September 2025
Department of Internal Medicine, Division of Cardiovascular Medicine, Francois M. Abboud Cardiovascular Research Center, Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, Iowa, USA.
Background: Gene transcription is crucial for embryo and postnatal development and is regulated by the Mediator complex. Mediator is comprised of four submodules, including the kinase submodule (CKM). The CKM consists of MED13, MED12, CDK8, and CCNC.
View Article and Find Full Text PDF