Targeting inflammasomes and pyroptosis in retinal diseases-molecular mechanisms and future perspectives.

Prog Retin Eye Res

State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China. Electronic address:

Published: July 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Retinal diseases encompass various conditions associated with sight-threatening immune responses and are leading causes of blindness worldwide. These diseases include age-related macular degeneration, diabetic retinopathy, glaucoma and uveitis. Emerging evidence underscores the vital role of the innate immune response in retinal diseases, beyond the previously emphasized T-cell-driven processes of the adaptive immune system. In particular, pyroptosis, a newly discovered programmed cell death process involving inflammasome formation, has been implicated in the loss of membrane integrity and the release of inflammatory cytokines. Several disease-relevant animal models have provided evidence that the formation of inflammasomes and the induction of pyroptosis in innate immune cells contribute to inflammation in various retinal diseases. In this review article, we summarize current knowledge about the innate immune system and pyroptosis in retinal diseases. We also provide insights into translational targeting approaches, including novel drugs countering pyroptosis, to improve the diagnosis and treatment of retinal diseases.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.preteyeres.2024.101263DOI Listing

Publication Analysis

Top Keywords

retinal diseases
20
innate immune
12
pyroptosis retinal
8
immune system
8
system pyroptosis
8
retinal
6
diseases
6
pyroptosis
5
immune
5
targeting inflammasomes
4

Similar Publications

Primary open-angle glaucoma (POAG) is characterized by chronic progressive damage to the retinal ganglion cell layer (GCL) and their axons, leading to gradual visual function loss. Currently, the gold standards for structural and functional assessment of the retina in glaucoma are static automated perimetry (SAP) and optical coherence tomography (OCT). However, in clinical practice, data from SAP and OCT may be insufficient to reliably determine the stage of glaucomatous optic neuropathy, monitor its progression, or differentiate it from other causes of visual dysfunction.

View Article and Find Full Text PDF

The introduction of autologous neurosensory retinal transplantation (ANRT) into vitreoretinal surgery has significantly improved the success rates of closure of refractory full-thickness macular holes (FTMH). In recent years, the technique has gained wide acceptance and its indications have expanded; however, certain aspects remain debatable - particularly the optimal graft size to ensure the best anatomical and functional outcomes. To address this issue, the study proposes a surgical technique for treating FTMH using ANRT that involves precise marking of the neurosensory retinal graft.

View Article and Find Full Text PDF

Objective: This study evaluated the outcomes of a 36-month follow-up after treatment with the ELLEX 2RT nanosecond laser.

Material And Methods: The study included 72 patients divided into two groups. Group 1 received 2RT nanosecond laser therapy, while group 2 did not undergo laser treatment.

View Article and Find Full Text PDF

Objective: This study evaluated the effect of sequential therapy with different dosages of Mexidol on the stabilization of glaucomatous optic neuropathy (GON) in patients with primary open-angle glaucoma (POAG).

Material And Methods: The study included 80 patients (160 eyes) with stage II and III POAG, randomized into three groups comparable by age, gender, and distribution of glaucoma stage. All patients received sequential therapy with Mexidol (14 days parenterally followed by 90 days orally).

View Article and Find Full Text PDF

Unlabelled: Automated analysis of optical coherence tomography (OCT) biomarkers improves the prediction of results of loading anti-VEGF therapy of vascular pigment epithelial detachment (PED) associated with neovascular age-related macular degeneration (nAMD).

Objective: This study evaluated the effectiveness of OCT biomarker analysis algorithm in predicting the anatomical outcomes of loading anti-VEGF therapy for vascular PED in nAMD.

Material And Methods: OCT scans performed prior to loading anti-VEGF therapy were analyzed using the algorithm in 69 treatment-naïve nAMD patients (70 eyes) with vascular PED exceeding 200 µm in height.

View Article and Find Full Text PDF