A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Automatic Segmentation of 2-D Echocardiography Ultrasound Images by Means of Generative Adversarial Network. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Automated cardiac segmentation from 2-D echocardiographic images is a crucial step toward improving clinical diagnosis. Anatomical heterogeneity and inherent noise, however, present technical challenges and lower segmentation accuracy. The objective of this study is to propose a method for the automatic segmentation of the ventricular endocardium, the myocardium, and the left atrium (LA), in order to accurately determine clinical indices. Specifically, we suggest using the recently introduced pixel-to-pixel generative adversarial network (Pix2Pix GAN) model for accurate segmentation. To accomplish this, we integrate the backbone PatchGAN model for the discriminator and the UNET for the generator, for building the Pix2Pix GAN. The resulting model produces precisely segmented images because of UNET's capability for precise segmentation and PatchGAN's capability for fine-grained discrimination. For the experimental validation, we use the cardiac acquisitions for multistructure ultrasound segmentation (CAMUS) dataset, which consists of echocardiographic images from 500 patients in two-chamber (2CH) and four-chamber (4CH) views at the end-diastolic (ED) and end-systolic (ES) phases. Similar to state-of-the-art studies on the same dataset, we followed the same train-test splits. Our results demonstrate that the proposed generative adversarial network (GAN)-based technique improves segmentation performance for clinical and geometrical parameters compared with the state-of-the-art methods. More precisely, throughout the ED and ES phases, the mean Dice values for the left ventricular endocardium ( ) reached 0.961 and 0.930 for 2CH, and 0.959 and 0.950 for 4CH, respectively. Furthermore, the average ejection fraction (EF) correlation and mean absolute error (MAE) obtained were 0.95 and 3.2 mL for 2CH, and 0.98 and 2.1 mL for 4CH, outperforming the state-of-the-art results.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TUFFC.2024.3393026DOI Listing

Publication Analysis

Top Keywords

generative adversarial
12
adversarial network
12
automatic segmentation
8
segmentation 2-d
8
echocardiographic images
8
ventricular endocardium
8
pix2pix gan
8
gan model
8
segmentation
7
2-d echocardiography
4

Similar Publications