Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Monitoring body temperature and energy expenditure in freely-moving laboratory mice remains a powerful methodology used widely across a variety of disciplines-including circadian biology, sleep research, metabolic phenotyping, and the study of body temperature regulation. Some of the most pronounced changes in body temperature are observed when small heterothermic species reduce their body temperature during daily torpor. Daily torpor is an energy saving strategy characterized by dramatic reductions in body temperature employed by mice and other species when challenged to meet energetic demands. Typical measurements used to describe daily torpor are the measurement of core body temperature and energy expenditure. These approaches can have drawbacks and developing alternatives for these techniques provides options that can be beneficial both from an animal-welfare and study-complexity perspective. First, this paper presents and assesses a method to estimate core body temperature based on measurements of subcutaneous body temperature, and second, a separate approach to better estimate energy expenditure during daily torpor based on core body temperature. Third, the effects of light exposure during the habitual dark phase and sleep deprivation during the light period on body temperature dynamics were tested preliminary in fed and fasted mice. Together, the here-published approaches and datasets can be used in the future to assess body temperature and metabolism in freely-moving laboratory mice.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11233429 | PMC |
http://dx.doi.org/10.1007/s00360-024-01554-4 | DOI Listing |