A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Integrating tumor and healthy epithelium in a micro-physiology multi-compartment approach to study renal cell carcinoma pathophysiology. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The advent of micro-physiological systems (MPS) in biomedical research has enabled the introduction of more complex and relevant physiological into in vitro models. The recreation of complex morphological features in three-dimensional environments can recapitulate otherwise absent dynamic interactions in conventional models. In this study we developed an advanced in vitro Renal Cell Carcinoma (RCC) that mimics the interplay between healthy and malignant renal tissue. Based on the TissUse Humimic platform our model combines healthy renal proximal tubule epithelial cells (RPTEC) and RCC. Co-culturing reconstructed RPTEC tubules with RCC spheroids in a closed micro-perfused circuit resulted in significant phenotypical changes to the tubules. Expression of immune factors revealed that interleukin-8 (IL-8) and tumor necrosis factor-alfa (TNF-α) were upregulated in the non-malignant cells while neutrophil gelatinase-associated lipocalin (NGAL) was downregulated in both RCC and RPTEC. Metabolic analysis showed that RCC prompted a shift in the energy production of RPTEC tubules, inducing glycolysis, in a metabolic adaptation that likely supports RCC growth and immunogenicity. In contrast, RCC maintained stable metabolic activity, emphasizing their resilience to external factors. RNA-seq and biological process analysis of primary RTPTEC tubules demonstrated that the 3D tubular architecture and MPS conditions reverted cells to a predominant oxidative phosphorylate state, a departure from the glycolytic metabolism observed in 2D culture. This dynamic RCC co-culture model, approximates the physiology of healthy renal tubules to that of RCC, providing new insights into tumor-host interactions. Our approach can show that an RCC-MPS can expand the complexity and scope of pathophysiology and biomarker studies in kidney cancer research.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11039668PMC
http://dx.doi.org/10.1038/s41598-024-60164-wDOI Listing

Publication Analysis

Top Keywords

rcc
9
renal cell
8
cell carcinoma
8
healthy renal
8
rptec tubules
8
tubules rcc
8
renal
5
tubules
5
integrating tumor
4
healthy
4

Similar Publications