Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: Tulathromycin (TUL) is a triamilide antibacterial drug which has been approved for use in the European Union and the United States for the treatment and prevention of bovine respiratory diseases. The existing methods for determination of TUL in its pharmaceutical bulk form are very limited and suffer from major drawbacks.

Objectives: The aim of this study was the development of two innovative microwell spectrophotometric methods (MW-SPMs) for determination of TUL in its pharmaceutical bulk form.

Methods: The formation of charge-transfer complexes (CTCs) of TUL, as an electron donor, was investigated with 2,5-dihydroxy-3,6-dichlorocyclohexa-2,5-diene-1,4-dione (HCD) and 2,3-dichloro-5,6-dicyano-p-benzoquinone (CBQ), as π-electron acceptors. The CTCs were characterized using UV-Vis spectrophotometry and computational calculations. The reactions were employed for the development of two MW-SPMs with one step for the quantitative analysis of TUL.

Results: The formation of CTCs was confirmed via the formation of characteristic absorption bands with maximum absorption at 520 and 460 nm for CTCs with HCD and CBQ, respectively. The stoichiometry of both CTCs was found to be 1:1, and the values of different spectroscopic and electronic constants confirmed the stability of the CTCs. The mechanisms of the reactions were postulated. The linear range of both MW-SPMs was 10-500 µg/mL. The LOQs were 13.5 and 26.4 µg/mL for methods involving reactions with HCD and CBQ, respectively. Both methods were successfully applied to the quantitation of TUL in pharmaceutical bulk form with acceptable accuracy and precision. The results of eco-friendliness/greenness assessment proved that both MW-SPMs fulfill the requirements of green analytical approaches. In addition, the one-step reactions and simultaneous handling of a large number of samples with micro-volumes in the proposed methods gave them the advantage of high-throughput analysis.

Conclusion: This study described two new MW-SPMs as valuable analytical tools for the determination of TUL.

Highlight: The proposed methods are valuable analytical tool for the analysis of bulk form of TUL.

Download full-text PDF

Source
http://dx.doi.org/10.1093/jaoacint/qsae035DOI Listing

Publication Analysis

Top Keywords

pharmaceutical bulk
16
bulk form
16
tul pharmaceutical
12
microwell spectrophotometric
8
spectrophotometric methods
8
antibacterial drug
8
determination tul
8
hcd cbq
8
proposed methods
8
valuable analytical
8

Similar Publications

Unravelling the polysorbate 20 composition: A fusion of UPLC-MS analysis and stochastic modelling.

Eur J Pharm Biopharm

September 2025

RaDes GmbH, Schnackenburgallee 114, 22525 Hamburg, Germany. Electronic address:

Polysorbate 20 (PS20) is one of the most commonly used non-ionic surfactants in cosmetics, pharmaceuticals and food products. Considered as biocompatible and non-irritating, it is further valued for its solubilising and protein stabilising properties. PS20 is manufactured through a multi-stage reaction of sorbitol with various fatty acids and ethylene oxide, resulting in a complex mixture of components with different molecular weights and polarity.

View Article and Find Full Text PDF

Radiation therapy (RT) plays important roles in cancer treatment, and the efficacy of RT depends on the abscopal effect, which results in the regression of distant and untreated tumors through localized irradiation of a single tumor lesion. This effect is mediated by effector tumor antigen-specific T cells (ETASTs) activated by RT. Monitoring the radiation-induced changes in ETASTs can be used to predict the abscopal effect.

View Article and Find Full Text PDF

Radiation dermatitis is a common side effect of radiotherapy, affecting up to 95% of cancer patients receiving radiation therapy and often leading to skin damage, inflammation, and ulceration. The pathogenesis of radiation dermatitis involves complex mechanisms, such as the production of reactive oxygen species (ROS) and sustained inflammatory responses. Current treatments, including topical steroids, moisturisers, and non-steroidal anti-inflammatory drugs (NSAIDs), often provide limited efficacy, primarily addressing symptoms rather than the underlying pathophysiological processes.

View Article and Find Full Text PDF

The clinical use of gemcitabine (GEM), a frontline chemotherapeutic agent for pancreatic ductal adenocarcinoma (PDAC), is limited by its short half-life, rapid systemic clearance, associated dose-limiting toxicities and a faster development of resistance in pancreatic cancer. Aspirin (ASP), a repurposed NSAID, has been shown to sensitize PDAC cells to GEM through modulation of multiple oncogenic and inflammatory pathways. However, its clinical use is restricted by dose-dependent gastrointestinal toxicity.

View Article and Find Full Text PDF

Background: Heat illness is a dangerous condition marked by a widespread inflammatory response. Although Pogostemon cablin (Blanco) Benth and its derivatives are clinically used, their mechanisms remain unclear.

Methods: 11 heat illness patients and 14 healthy volunteers from Southwest Medical University Affiliated Hospital were enrolled.

View Article and Find Full Text PDF