A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Application of a novel deep learning-based 3D videography workflow to bat flight. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Studying the detailed biomechanics of flying animals requires accurate three-dimensional coordinates for key anatomical landmarks. Traditionally, this relies on manually digitizing animal videos, a labor-intensive task that scales poorly with increasing framerates and numbers of cameras. Here, we present a workflow that combines deep learning-powered automatic digitization with filtering and correction of mislabeled points using quality metrics from deep learning and 3D reconstruction. We tested our workflow using a particularly challenging scenario: bat flight. First, we documented four bats flying steadily in a 2 m wind tunnel test section. Wing kinematic parameters resulting from manually digitizing bats with markers applied to anatomical landmarks were not significantly different from those resulting from applying our workflow to the same bats without markers for five out of six parameters. Second, we compared coordinates from manual digitization against those yielded via our workflow for bats flying freely in a 344 m enclosure. Average distance between coordinates from our workflow and those from manual digitization was less than a millimeter larger than the average human-to-human coordinate distance. The improved efficiency of our workflow has the potential to increase the scalability of studies on animal flight biomechanics.

Download full-text PDF

Source
http://dx.doi.org/10.1111/nyas.15143DOI Listing

Publication Analysis

Top Keywords

bat flight
8
anatomical landmarks
8
manually digitizing
8
bats flying
8
bats markers
8
workflow bats
8
manual digitization
8
workflow
7
application novel
4
novel deep
4

Similar Publications