A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Phylogenetic distribution and experimental characterization of corrinoid production and dependence in soil bacterial isolates. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Soil microbial communities impact carbon sequestration and release, biogeochemical cycling, and agricultural yields. These global effects rely on metabolic interactions that modulate community composition and function. However, the physicochemical and taxonomic complexity of soil and the scarcity of available isolates for phenotypic testing are significant barriers to studying soil microbial interactions. Corrinoids-the vitamin B12 family of cofactors-are critical for microbial metabolism, yet they are synthesized by only a subset of microbiome members. Here, we evaluated corrinoid production and dependence in soil bacteria as a model to investigate the ecological roles of microorganisms involved in metabolic interactions. We isolated and characterized a taxonomically diverse collection of 161 soil bacteria from a single study site. Most corrinoid-dependent bacteria in the collection prefer B12 over other corrinoids, while all tested producers synthesize B12, indicating metabolic compatibility between producers and dependents in the collection. Furthermore, a subset of producers release B12 at levels sufficient to support dependent isolates in laboratory culture at estimated ratios of up to 1000 dependents per producer. Within our isolate collection, we did not find strong phylogenetic patterns in corrinoid production or dependence. Upon investigating trends in the phylogenetic dispersion of corrinoid metabolism categories across sequenced bacteria from various environments, we found that these traits are conserved in 47 out of 85 genera. Together, these phenotypic and genomic results provide evidence for corrinoid-based metabolic interactions among bacteria and provide a framework for the study of nutrient-sharing ecological interactions in microbial communities.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11287214PMC
http://dx.doi.org/10.1093/ismejo/wrae068DOI Listing

Publication Analysis

Top Keywords

corrinoid production
12
production dependence
12
metabolic interactions
12
dependence soil
8
soil microbial
8
microbial communities
8
soil bacteria
8
soil
6
interactions
5
bacteria
5

Similar Publications