Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

We present measurements of the coherence times of excited states of hydrogen-like arsenic impurities in germanium (Ge:As) using a table-top two-dimensional time-domain spectroscopy (2D-TDS) system. We show that this laboratory system is capable of resolving the coherence lifetimes of atomic-like excited levels of impurity centers in semiconductors, such as those used in solid-state quantum information technologies, on a subpicosecond time scale. By fitting the coherent nonlinear response of the system with the known intracenter transition frequencies, we are able to monitor coherent population transfer and decay of the transitions from the 2p and 2p states for different low excitation pulse fields. Furthermore, by examining the off-diagonal resonances in the 2D frequency-domain map, we are able to identify coherences between excited electronic states that are not visible via conventional single-frequency pump-probe or Hahn-echo measurements.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11027176PMC
http://dx.doi.org/10.1021/acsphotonics.3c01522DOI Listing

Publication Analysis

Top Keywords

time-domain spectroscopy
8
spectroscopy determination
4
determination energy
4
energy momentum
4
momentum relaxation
4
relaxation rates
4
rates hydrogen-like
4
hydrogen-like donor
4
states
4
donor states
4

Similar Publications

Probing the Influence of Water on the Molecular Mobility of PVP/VA using Terahertz Spectroscopy.

Mol Pharm

September 2025

Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB3 0AS, U.K.

The presence of water significantly impacts the physical stability of amorphous solid dispersions (ASDs) by altering polymer molecular mobility. This study investigates the influence of low levels of absorbed water on the molecular dynamics and glass transition behavior of amorphous poly(vinylpyrrolidone--vinyl acetate) (PVP/VA). Melt-quenched PVP/VA discs were conditioned at controlled relative humidities (RH 8.

View Article and Find Full Text PDF

Chemically and Electromagnetically dual-enhanced COFs-Au@AgNPs SERS sensor integrated with deep learning for ultrasensitive detection of neonicotinoid pesticides.

Anal Chim Acta

November 2025

Measurement Technology & Instrumentation Key Laboratory of Hebei Province, Institute of Electrical Engineering, Yanshan University, Qinhuangdao, 066004, China.

Background: With the development of modern agriculture, neonicotinoid pesticides have been widely used due to their high efficiency and strong systemic properties. However, excessive use leads to the accumulation of residues in the food chain, threatening the ecosystem and human health. Pesticide residues are easily accumulated in oilseed crops and become concentrated during the edible oil refining process.

View Article and Find Full Text PDF

The thermodynamic equilibrium assumption often invoked in modeling ion migration in solid-state materials remains insufficient to capture the true migration behavior of Li ions, particularly in less-crystalline superionic conductors that exhibit anomalously high Li ion conductivity. Such materials challenge classical frameworks and necessitate a lattice dynamics-based perspective that explicitly accounts for nonequilibrium phonon interactions and transient structural responses. Here, we uncover a phonon-governed Li ion migration mechanism in garnet-structured superionic conductors by comparing Ta-doped LiLaZrTaO (LLZTO4) to its undoped analogue, LiLaZrAlO (LLZO).

View Article and Find Full Text PDF

Fungicides are essential agrochemicals for the prevention and control of plant diseases. Counterfeit products, often lacking enough active ingredients, can compromise disease management and pose risks to agricultural safety. Precise quantification of the chemical structure and concentration of active components enables reliable authentication of fungicide formulations, ensuring their efficacy in crop protection and supporting the quality and safety of agricultural production.

View Article and Find Full Text PDF

Tetrodotoxin (TTX) is a potent neurotoxic marine biotoxin that poses severe health risks. To address this challenge, a dual-mode detection strategy was developed based on TTX-induced conformational changes in hairpin probes (HP), regulation of Au NPs aggregation to modulate localized surface plasmon resonance, and hotspot formation for colorimetric and surface-enhanced Raman spectroscopy (SERS) signal detection. This method demonstrates higher specificity than ion-induced aggregation.

View Article and Find Full Text PDF