Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Following the publication of the above article, an interested reader drew to the authors' attention that, for the cell invasion assay experiments shown in Fig. 2D on p. 5, there appeared to be an overlapping section of data comparing between the Sao‑2/Control and MG‑63/siH19 panels, such that these data had been derived from the same original source where the panels were intended to portray the results from differently performed epxeriments. Upon examining their original data, the authors have realized that, in Fig. 2D, an inadvertent error was made in the copying and pasting of the two groups of pictures, resulting in the image belonging to the Saos‑2 cell experiment being mistakenly pasted as the image for the MG‑63 cell experiment. The authors carefully checked the original pictures and the experimental record, and found that the two groups of cells were close to the same morphology. The corrected version of Fig. 2, containing data from an alternatively performed experiment for Fig. 2D, is shown on the next page. Note that the error did not affect the overall conclusions reported in the paper. All the authors agree with the publication of this corrigendum, and are grateful to the Editor of for allowing them the opportunity to publish this. They also apologize to the readership for any inconvenience caused. [Oncology Reports 46: 207, 2021; DOI: 10.3892/or.2021.8158].

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11056679PMC
http://dx.doi.org/10.3892/or.2024.8737DOI Listing

Publication Analysis

Top Keywords

cell experiment
8
[corrigendum] long
4
long non‑coding
4
non‑coding rna
4
rna h19
4
h19 regulates
4
regulates lasp1
4
lasp1 expression
4
expression osteosarcoma
4
osteosarcoma competitively
4

Similar Publications

flavones (PRFs), bioactive components derived from the plant, exhibit anti-inflammatory and anti-tumor properties. However, their therapeutic potential for bladder cancer remains poorly understood. The present study aimed to investigate the anti-tumor effects and molecular mechanisms underlying the effects of PRF on human bladder cancer T24 cells.

View Article and Find Full Text PDF

Cell senescence is a state of stable proliferation arrest characterized by morphological changes and high senescence-associated β-galactosidase (SA-β-gal) activity. Inducing senescence in cancer cells is beneficial for cancer therapy due to proliferation arrest, however, the mechanisms underlying this process remain insufficiently understood. Therefore, the present study investigated the mechanisms of radiation-induced cellular senescence in A549 human lung cancer cells, focusing on the DNA damage response and cell cycle regulation.

View Article and Find Full Text PDF

Introduction: 5-Hydroxymethyl furfural (5-HMF) is a furan compound with a molecular formula of CHO. Studies have found that 5-HMF has many pharmacological effects, such as improving hemorheology, anti-inflammatory, antioxidant activity and anti-myocardial ischemia. Identifying the preventive effect of 5-HMF against ischemic stroke and its possible mechanism was the aim of this investigation.

View Article and Find Full Text PDF

Ulcerative colitis (UC) is a chronic inflammatory bowel disease, the incidence of which continues to rise globally, and existing therapeutic options are limited by low drug bioavailability and systemic side effects. In this study, we systematically investigated the challenges of the special gastrointestinal environment of UC patients for oral drug delivery, such as extreme pH, degradation by digestive enzymes, metabolism of intestinal flora and obstruction of the intestinal mucosal barrier, and summarized the potential of plant-derived Exosome-like Nanovesicles (PELNs) as a novel delivery system. PELNs are produced by plant cells and mainly consist of proteins, RNA, lipids and plant active molecules.

View Article and Find Full Text PDF

High-Pressure X‑ray Diffraction Study of Scheelite-Type Perrhenates.

J Phys Chem C Nanomater Interfaces

September 2025

Departamento de Física Aplicada - Instituto de Ciencia de Materiales, Matter at High Pressure (MALTA) Consolider Team, Universidad de Valencia, Edificio de Investigación, C/Dr Moliner 50, 46100 Burjassot, Valencia Spain.

The effects of pressure on the crystal structure of scheelite-type perrhenates were studied using synchrotron powder X-ray diffraction and density-functional theory. At ambient conditions, the studied materials AgReO, KReO, and RbReO, exhibit a tetragonal scheelite-type crystal structure described by space group 4/. Under compression, a transition from scheelite-to-M'-fergusonite (space group 2/) was observed at 1.

View Article and Find Full Text PDF