Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
The unique structure and beneficial biological properties of marine natural products have drawn interest in drug development. Here, we examined the therapeutic potential of napyradiomycin B4 isolated from marine-derived species for osteoclast-related skeletal diseases. Bone marrow-derived macrophages were treated with napyradiomycin B4 in an osteoclast-inducing medium, and osteoclast formation, osteoclast-specific gene expression, and nuclear factor of activated T-cells cytoplasmic 1 (NFATc1) localization were evaluated using tartrate-resistant acid phosphatase staining, real-time PCR, and immunostaining, respectively. Phosphorylation levels of signaling proteins were assessed by immunoblot analysis to understand the molecular action of napyradiomycin B4. The efficacy of napyradiomycin B4 was examined under experimental periodontitis, and alveolar bone destruction was evaluated by microcomputed tomography (micro-CT) and histological analyses. Among the eight napyradiomycin derivatives screened, napyradiomycin B4 considerably inhibited osteoclastogenesis. Napyradiomycin B4 significantly suppressed the receptor activator of nuclear factor-κB ligand (RANKL)-induced osteoclast formation and disrupted the expression of and its target genes. Mitogen-activated extracellular signal-regulated kinase (MEK) and extracellular signal-regulated kinase (ERK) phosphorylation levels were reduced by napyradiomycin B4 in response to RANKL. Under experimental periodontitis, napyradiomycin B4 significantly attenuated osteoclast formation and decreased the distance between the cementoenamel junction and alveolar bone crest. Our findings demonstrate the antiosteoclastogenic activity of napyradiomycin B4 by inhibiting the RANKL-induced MEK-ERK signaling pathway and its protective effect on alveolar bone destruction.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11019734 | PMC |
http://dx.doi.org/10.1021/acsptsci.3c00315 | DOI Listing |