Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
In the field of Laser Induced Breakdown Spectroscopy (LIBS) research, the screening and extraction of complex spectra play a crucial role in enhancing the accuracy of quantitative analysis. This paper introduces a novel approach for multiple screenings of LIBS spectra using Lorentz Screening and Sensitivity and Volatility Analysis. Initially, Create symmetrical sampling standards for Lorentz fitting. Then the Lorentz fitting is used to uniformly screen the collected spectral information on both sides in order to eliminate adjacent interference peaks. Subsequently, Sensitivity and Volatility Analysis is employed to further remove overlapping peaks and select spectra with low volatility and high sensitivity. Sensitivity and Volatility Analysis is a spectral discrimination method proposed on the premise of intensity's correlation with concentration. It utilizes a Z-score method that incorporates both deviation and standard deviation for effective analysis. Furthermore, it meticulously selects spectral lines with minimal interference and volatility, thereby augmenting the precision of quantitative analysis. The quantitative accuracy (R) for Chromium (Cr) and Nickel (Ni) elements can reach 0.9919 and 0.9768, respectively. Their average errors can be reduced to 0.0566 % and 0.1024 %. The study demonstrates that Lorentz Screening and Sensitivity and Volatility Analysis can select high-quality characteristic spectral lines to improve the performance of the model.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.talanta.2024.126087 | DOI Listing |