A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Molecularly Imprinted Macroporous Hydrogel Promotes Bone Regeneration via Osteogenic Induction and Osteoclastic Inhibition. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Macroporous hydrogels offer physical supportive spaces and bio-instructive environment for the seeded cells, where cell-scaffold interactions directly influence cell fates and subsequently affect tissue regeneration post-implantation. Effectively modifying bioactive motifs at the inner pore surface provides appropriate niches for cell-scaffold interactions. A molecular imprinting method and sacrificial templates are introduced to prepare inner pore surface modification in the macroporous hydrogels. In detail, acrylated bisphosphonates (Ac-BPs) chelating to templates (CaCO particles) are anchored on the inner pore surface of the methacrylated gelatin (GelMA)-methacrylated hyaluronic acid (HAMA)-poly (ethylene glycol) diacrylate (PEGDA) macroporous hydrogel (GHP) to form a functional hydrogel scaffold (GHP-int-BP). GHP-int-BP, but not GHP, effectively crafts artificial cell niches to substantially alter cell fates, including osteogenic induction and osteoclastic inhibition, and promote in situ bone regeneration. These findings highlight that molecular imprinting on the inner pore surface in the hydrogel efficiently creates orthogonally additive bio-instructive scaffolds for bone regeneration.

Download full-text PDF

Source
http://dx.doi.org/10.1002/adhm.202400897DOI Listing

Publication Analysis

Top Keywords

inner pore
16
pore surface
16
bone regeneration
12
macroporous hydrogel
8
osteogenic induction
8
induction osteoclastic
8
osteoclastic inhibition
8
macroporous hydrogels
8
cell-scaffold interactions
8
cell fates
8

Similar Publications