Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Due to the rapid increase in the world's population, many developing countries are facing malnutrition problems, including famine and food insecurity. Particularly, the deficiency of protein sources becomes a serious problem for human and animal nutrition. In this context, Single Cell Proteins, could be exploited as an alternative source of unconventional proteins. The aim of the study was to investigate SCP production and composition by Cupriavidus necator under various environmental conditions, temperature and pH values. A mono-factorial approach was implemented using batch bioreactor cultures under well-controlled conditions. Results were compared in terms of bacterial growth and SCP composition (proteins, nucleic acids, amino acids and elemental formula). Complementary analyses were performed by flow cytometry to study cell morphology, membrane permeability and the presence of Poly(3-hydroxybutyrate) (PHB) production. Our data confirmed the ability of C. necator to produce high amount of proteins (69 % at 30 °C and pH7). The results showed that temperature and pH independently impact SCP production and composition. This impact was particularly observed at the highest temperature (40 °C) and also the lowest pH value (pH5) providing lower growth rates, cell elongation, changes in granularity and lower amounts of proteins (down to 44 % at pH5) and nucleic acids. These low percentages were related to the production of PHB production (up to 44 % at 40 °C) which is the first report of a PHB accumulation in C. necator under nutrient unlimited conditions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jbiotec.2024.04.009 | DOI Listing |