Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Magnetic molecules adsorbed on two-dimensional (2D) substrates have attracted broad attention because of their potential applications in quantum device applications. Experimental observations have demonstrated substantial alteration in the spin excitation energy of iron phthalocyanine (FePc) molecules when adsorbed on nitrogen-doped graphene substrates. However, the underlying mechanism responsible for this notable change remains unclear. To shed light on this, we employ an embedding method and quantum chemistry calculations to investigate the effects of surface doping on molecular properties. Our study unveils an unconventional chemical bonding at the interface between the FePc molecule and the N-doped graphene. This bonding interaction, stronger than non-covalent interactions, significantly modifies the magnetic anisotropy energy of the adsorbed molecule, consistent with experimental observations. These findings provide valuable insights into the electronic and magnetic properties of molecules on 2D substrates, offering a promising pathway for precise manipulation of molecular spin states.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jpclett.4c00384 | DOI Listing |