Two-photon absorption cross sections of pulsed entangled beams.

J Chem Phys

Max Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, 22761 Hamburg, Germany; University of Hamburg, Luruper Chaussee 149, Hamburg, Germany; and The Hamburg Centre for Ultrafast Imaging, Hamburg, Germany.

Published: April 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Entangled two-photon absorption (ETPA) could form the basis of nonlinear quantum spectroscopy at very low photon fluxes, since, at sufficiently low photon fluxes, ETPA scales linearly with the photon flux. When different pairs start to overlap temporally, accidental coincidences are thought to give rise to a "classical" quadratic scaling that dominates the signal at large photon fluxes and, thus, recovers a supposedly classical regime, where any quantum advantage is thought to be lost. Here, we scrutinize this assumption and demonstrate that quantum-enhanced absorption cross sections can persist even for very large photon numbers. To this end, we use a minimal model for quantum light, which can interpolate continuously between the entangled pair and a high-photon-flux limit, to analytically derive ETPA cross sections and the intensity crossover regime. We investigate the interplay between spectral and spatial degrees of freedom and how linewidth broadening of the sample impacts the experimentally achievable enhancement.

Download full-text PDF

Source
http://dx.doi.org/10.1063/5.0196817DOI Listing

Publication Analysis

Top Keywords

cross sections
12
photon fluxes
12
two-photon absorption
8
absorption cross
8
low photon
8
large photon
8
photon
5
sections pulsed
4
pulsed entangled
4
entangled beams
4

Similar Publications

Aims: To assess self-reported practices and knowledge of nurses and prescribers (i.e., physicians and nurse practitioners) on intravenous fluid therapy, and to evaluate how this is documented through a clinical documentation review.

View Article and Find Full Text PDF

A flexible linear circular bipolarization conversion metasurface based on graphene.

Phys Chem Chem Phys

September 2025

School of Electrical and Automation Engineering, Suzhou University of Technology, Suzhou, 215506, China.

A flexible bipolarization conversion metasurface based on graphene is proposed in this paper, which can achieve single-band linear-to-linear (LTL) and dual-band linear-to-circular (LTC) polarization conversion. The polarization conversion ratio (PCR) and axial ratio (AR) are dynamically regulated by varying the sheet resistance () of graphene. When = 1400 Ω Sq, the designed metasurface achieves a single-band LTL polarization conversion of 7.

View Article and Find Full Text PDF

Prediction and Characterization of Genetically-Regulated Expression of Asthma Tissues from African-Ancestry Populations.

J Allergy Clin Immunol

September 2025

Department of Biomedical Informatics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Department of Epidemiology, Colorado School of Public Health, Aurora, CO, USA. Electronic address:

Background: Genetic control of gene expression in asthma-related tissues is not well-characterized, particularly for African-ancestry populations, limiting advancement in our understanding of the increased prevalence and severity of asthma in those populations.

Objective: To create novel transcriptome prediction models for asthma tissues (nasal epithelium and CD4+ T cells) and apply them in transcriptome-wide association study to discover candidate asthma genes.

Methods: We developed and validated gene expression prediction databases for unstimulated CD4+ T cells and nasal epithelium using an elastic net framework.

View Article and Find Full Text PDF

Accurate theoretical characterization of MgS: rovibrational line intensities and absorption cross-sections for astrophysical modeling.

Spectrochim Acta A Mol Biomol Spectrosc

August 2025

Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610065, PR China. Electronic address:

The electronic structure, spectroscopic constants, and transition parameters of the diatomic molecule Magnesium monosulfide (MgS) were investigated using high-level multi-reference configuration interaction calculations with the Davidson correction (MRCI+Q) and a consistent basis set for both Mg and S atoms. Potential energy curves and dipole moment functions were computed, allowing for accurate predictions of rovibrational energy levels. Key transition properties, including radiative lifetimes and Franck-Condon factors, were evaluated for transitions within the ground electronic state and the first excited singlet state.

View Article and Find Full Text PDF

Background: High maternal morbidity and mortality rates globally, especially in low-income and lower-middle-income countries, highlight the critical role of skilled health care providers (HCPs) in preventing pregnancy-related complications among disadvantaged populations. Lebanon, hosting over 1.5 million refugees, is no exception.

View Article and Find Full Text PDF