98%
921
2 minutes
20
Augmenting depleted genetic diversity can improve the fitness and evolutionary potential of wildlife populations, but developing effective management approaches requires genetically monitored test cases. One such case is the small, isolated and inbred Cotter River population of an endangered Australian freshwater fish, the Macquarie perch , which over 3 years (2017-2019) received 71 translocated migrants from a closely related, genetically more diverse population. We used genetic monitoring to test whether immigrants bred, interbred with local fish and augmented population genetic diversity. We also investigated whether levels of river flow affected recruitment, inbreeding depression and juvenile dispersal. Fish length was used to estimate the age, birth year cohort and growth of 524 individuals born between 2016 and 2020 under variable flow conditions. DArT genome-wide genotypes were used to assess individual ancestry, heterozygosity, short-term effective population size and identify parent-offspring and full-sibling families. Of 442 individuals born after translocations commenced, only two (0.45%) were of mixed ancestry; these were half-sibs with one translocated parent in common. Numbers of breeders and genetic diversity for five birth year cohorts of the Cotter River fish were low, especially in low-flow years. Additionally, individuals born in the year of lowest flow evidently suffered from inbreeding depression for juvenile growth. The year of highest flow was associated with the largest number of breeders, lowest inbreeding in the offspring and greatest juvenile dispersal distances. Genetic diversity decreased in the upstream direction, flagging restricted access of breeders to the most upstream breeding sites, exacerbated by low river flow. Our results suggest that the effectiveness of translocations could be increased by focussing on upstream sites and moving more individuals per year; using riverine sources should be considered. Our results indicate that river flow sufficient to facilitate fish movement through the system would increase the number of breeders, promote individuals' growth, reduce inbreeding depression and promote genetic rescue.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11009430 | PMC |
http://dx.doi.org/10.1111/eva.13679 | DOI Listing |
Anim Biosci
September 2025
Graduate school of environmental, life and natural science, Okayama University, Okayama, Japan.
Objectives: The objective of this study was to evaluate genomic inbreeding in Japanese Black cattle and its effects on reproductive traits.
Methods: The study analyzed reproductive records and SNP data from Japanese Black cattle born between 2001 and 2005, resulting in 8,553 records from large farms. Genomic inbreeding was assessed using SNP data from 782 animals.
J Anim Ecol
September 2025
Centre for Ecology, Evolution, and Conservation, School of Biological Sciences, University of East Anglia, Norwich, UK.
Inbreeding and the associated increase in homozygosity and potential accumulation of deleterious alleles may reduce fitness in a process known as inbreeding depression. Mechanisms to mitigate reproduction between close relatives, ranging from pre-mating mate choice to post-mating gamete selection, have evolved across taxa. In external fertilisers like Atlantic salmon (Salmo salar), where females have limited control over paternity, mechanisms of inbreeding avoidance can be expected to evolve at the gamete level.
View Article and Find Full Text PDFG3 (Bethesda)
August 2025
Department of Biology and Center for Genomics & Systems Biology, New York University, New York, New York 10012, USA.
Outbreeding populations harbor large numbers of recessive deleterious alleles that reduce the fitness of inbred individuals, and this inbreeding depression potentially shapes the evolution of mating systems, acting as a counterweight to the inherent selective advantage of self-fertilization. The population biological factors that influence inbreeding depression are numerous and often difficult to disentangle. We investigated the utility of obligately-outcrossing Caenorhabditis nematodes as models for inbreeding depression.
View Article and Find Full Text PDFBMC Plant Biol
August 2025
Department of Agronomy and Plant Breeding, College of Agriculture, Isfahan University of Technology, Isfahan, 84156-83111, Iran.
Background: As climate change intensifies, perennial plants face more frequent drought periods throughout their lifespan. Drought stress memory in certain plants significantly enhances their adaptability to challenging environmental circumstances. However, in open-pollinated crops, this process is influenced by population plasticity due to the type and degree of genetic diversity, and inbreeding depression.
View Article and Find Full Text PDFPLoS Pathog
August 2025
Disease Intervention and Prevention Program, Texas Biomedical Research Institute, San Antonio, Texas, United States of America.
Schistosomes are obligately sexual blood flukes that can be maintained in the laboratory using freshwater snails as intermediate and rodents as definitive hosts. The genetic composition of laboratory schistosome populations is poorly understood: whether genetic variation has been purged due to serial inbreeding or retained is unclear. We sequenced 19 - 24 parasites from each of five laboratory Schistosoma mansoni populations and compared their genomes with published exome data from four S.
View Article and Find Full Text PDF