98%
921
2 minutes
20
In the current research study, zinc oxide nanoparticles (ZnO-NPs) were synthesized via a green synthesis technique using the seed extract of . The study further intended to evaluate the potential synergistic effects of ZnO-NPs with antibiotics against multidrug resistant (MDR) bacteria. It was observed that seed extracts obtained by -hexane and methanolic solvents revealed the presence of constituents, such as tannins, flavonoids, and terpenoids. Furthermore, the extract of -hexane displayed the strongest antibacterial activity against species (17 ± 1.2 mm) and (17 ± 2.6 mm), while the methanolic extract showed the maximum antibacterial activity against (17 ± 0.8 mm). Additionally, the ZnO-NP synthesis was confirmed by ultraviolet-visible analysis with a characteristic absorption peak at 280 nm. The Fourier transform infrared spectroscopy analysis suggested the absorption peaks in the 500-3800 cm range, which corresponds to various groups of tertiary alcohol, aldehyde, amine, ester, aromatic compounds, thiol, amine salt, and primary amine. The scanning electron microscopy spectra of ZnO-NPs demonstrated the presence of zero-dimensional spherical particles with well-dispersed character. Moreover, encapsulation with ZnO-NPs improved the antimicrobial activity of antibiotics against the panel of MDR bacteria, and the increases in the effectiveness of particular antibiotics against MDR bacteria were significant ( = 0.0005). In essence, the synthesized ZnO-NPs have the potential as drug carriers with powerful bactericidal properties that work against MDR bacterial strains. These outcomes are an indication of such significance in pharmaceutical science, giving possibilities for further research and development in this field.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11007856 | PMC |
http://dx.doi.org/10.1021/acsomega.4c01554 | DOI Listing |
Vet World
July 2025
Microbiology Laboratory, Veterinary Hospital of the Federal University of Mato Gross - UFMT, Cuiabá, Mato Grosso, Brazil.
Background And Aim: The global rise of multidrug-resistant (MDR) poses a serious threat to human and animal health. Close proximity between humans and domestic animals may facilitate zoonotic transmission of MDR strains, underscoring the need for integrated surveillance strategies. This study aimed to investigate the genetic diversity, resistance mechanisms, and virulence gene profiles of isolates from domestic animals and humans in Mato Grosso, Brazil, within the One Health framework.
View Article and Find Full Text PDFBMC Infect Dis
September 2025
Department of Laboratory Medicine, Affiliated Hospital of Medical School, Nanjing Drum Tower Hospital, Nanjing University, Nanjing, China.
Background: Serratia marcescens is an opportunistic pathogen increasingly associated with healthcare-associated infections and rising antimicrobial resistance. The emergence of multidrug-resistant (MDR) and carbapenem-resistant S. marcescens (CRSM) presents significant therapeutic challenges.
View Article and Find Full Text PDFNPJ Biofilms Microbiomes
September 2025
Research Group Medical Systems Biology, University Hospital Schleswig-Holstein Campus Kiel, 24105 Kiel University, Kiel, Schleswig-Holstein, Germany.
Urinary tract infections (UTIs) are among the most common bacterial infections and are increasingly complicated by multidrug resistance (MDR). While Escherichia coli is frequently implicated, the contribution of broader microbial communities remains less understood. Here, we integrate metatranscriptomic sequencing with genome-scale metabolic modeling to characterize active metabolic functions of patient-specific urinary microbiomes during acute UTI.
View Article and Find Full Text PDFPLoS Negl Trop Dis
September 2025
Department of Clinical Science, Liverpool School of Tropical Medicine, Liverpool, United Kingdom.
Background: Salmonella enterica encompasses over 2,600 serovars, including several commonly associated with severe infection in humans. Salmonella is a major cause of sepsis in Africa; however, diagnosis requires clinical microbiology facilities. Environmental surveillance has the potential to play a role in Salmonella surveillance.
View Article and Find Full Text PDFJ Epidemiol Glob Health
September 2025
Center for Communicable Diseases Control (CDC), Ministry of Health and Medical Education, Tehran, Iran.
Background: Healthcare-associated infections (HCAIs) pose a serious threat to healthcare systems. Accurately determining the incidence of HCAIs is crucial for planning and implementing efficient interventions, as they are associated with a wide range of challenges. The objective of this study was to assess and update the incidence rates of HCAIs in Iran in 2023, using data from the Iranian Nosocomial Infection Surveillance (INIS) system, a nationwide hospital-based surveillance program.
View Article and Find Full Text PDF