Machine learning-assisted chromium speciation using a single-well ratiometric fluorescent nanoprobe.

Chemosphere

Department of Chemistry, Sharif University of Technology, Tehran, 11155-9516, Iran; Center for Nanoscience and Nanotechnology, Institute for Convergence Science & Technology, Sharif University of Technology, Tehran, 14588-89694, Iran.

Published: June 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Chromium is widely recognized as a significant pollutant discharged into the environment by various industrial activities. The toxicity of this element is dependent on its oxidation state, making speciation analysis crucial for monitoring the quality of environmental water and assessing the potential risks associated with industrial waste. This study introduces a single-well fluorometric sensor that utilizes orange emissive thioglycolic acid stabilized CdTe quantum dots (TGA-QDs) and blue emissive carbon dots (CDs) to detect and differentiate between various chromium species, such as Cr (III) and Cr (VI) (i.e., CrO and CrO). The variations of fluorescence spectra of the proposed probe upon chromium species addition were analyzed using machine learning techniques such as linear discriminant analysis and partial least squares regression as a classification and multivariate calibration technique, respectively. Linear discriminant analysis (LDA) demonstrated exceptional accuracy in differentiating single-component and bicomponent samples. Additionally, the findings from the partial least squares regression (PLSR) showed that the sensor created has strong linearity within the 1.0-100.0, 1.0-100.0, and 0.1-15 μM range for CrO, CrO, and Cr, respectively. Furthermore, appropriate detection limits were successfully achieved, which were 2.6, 2.9, and 0.7 μM for CrO, CrO, and Cr, respectively. Ultimately, the successful capability of the sensing platform in the identification and quantification of chromium species in environmental water samples provides innovative insights into general speciation analytics.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chemosphere.2024.141966DOI Listing

Publication Analysis

Top Keywords

chromium species
12
cro cro
12
environmental water
8
linear discriminant
8
discriminant analysis
8
partial squares
8
squares regression
8
cro
6
chromium
5
machine learning-assisted
4

Similar Publications

This exploratory study surveyed seven contaminated brownfields and Superfund sites in Southern California to identify locally adapted species tolerant of mixed organic and metal contamination under arid and semi-arid conditions. Five novel native plants, including Brickellia californica, Baccharis salicifolia, Baccharis sarothroides, Eriogonum fasciculatum, and Heterotheca grandiflora were identified as hyperaccumulators of copper (Cu), alongside a non-native species from the Asteraceae family, Helminthotheca echioides. Additional metal-accumulating plants (including native plants) for lead (Pb), chromium (Cr), arsenic (As), and nickel (Ni) were identified, and warrant further evaluation for their phytoremediation potential.

View Article and Find Full Text PDF

Anode-free sulfide-based all-solid-state lithium metal batteries (ASSLMBs), which eliminate the need for a lithium metal anode during fabrication, offer superior energy density, enhanced safety, and simplified manufacturing. Their performance is largely influenced by the interfacial properties of the current collectors. Although previous studies have investigated the degradation of sulfide electrolytes on commonly used copper (Cu) and stainless steel (SS) current collectors, the impact of spontaneously formed surface oxides, such as copper oxide (CuO/CuO) and chromium oxide (CrO), on interfacial stability remains underexplored.

View Article and Find Full Text PDF

Bioaccumulation of metals and metalloids in marine environments poses a significant risk to both human and aquatic health, with seasonal fluctuations substantially influencing its dynamics and magnitude. This study investigated the impact of metals and metalloids exposure on the health of Wallago attu (Wallago catfish) and Catla catla (Indian carp) inhabiting the Head Siphon, Mailsi, Pakistan. This study involved the seasonal (May 2022, October 2022, April 2023) assessment of physicochemical properties and the concentrations of several metals and metalloids-copper (Cu), chromium (Cr), arsenic (As), cadmium (Cd), nickel (Ni), zinc (Zn), and iron (Fe)-in water samples.

View Article and Find Full Text PDF

Metal pollution, particularly chromium, in water and food samples is a critical issue due to its transfer to the human body through the food chain and its threat to human health. Among the chromium species that can be found in water samples, chromates are classified as toxic by scientific authorities. Spectroscopic instruments have limitations in metal speciation analysis, and there is a need for suitable methods that allow chromium speciation.

View Article and Find Full Text PDF

Background: Effective cleaning protocols are crucial for controlling biofilm formation on oral prostheses and preserving the oral health of patients relying on removable partial dentures (RPDs).

Objectives: The present study aimed to investigate the antibiofilm efficacy of 4 cleansing protocols on a cobalt-chromium (Co-Cr) alloy surface, which is commonly used as the base-metal framework material in dental prosthodontics.

Material And Methods: Cobalt-chromium specimens were contaminated with isolated strains of Candida albicans, Candida glabrata, Staphylococcus aureus, and Streptococcus mutans to form monospecies biofilms.

View Article and Find Full Text PDF