Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: To investigate the effectiveness of contrastive learning, in particular SimClr, in reducing the need for large annotated ultrasound (US) image datasets for fetal standard plane identification.

Methods: We explore SimClr advantage in the cases of both low and high inter-class variability, considering at the same time how classification performance varies according to different amounts of labels used. This evaluation is performed by exploiting contrastive learning through different training strategies. We apply both quantitative and qualitative analyses, using standard metrics (F1-score, sensitivity, and precision), Class Activation Mapping (CAM), and t-Distributed Stochastic Neighbor Embedding (t-SNE).

Results: When dealing with high inter-class variability classification tasks, contrastive learning does not bring a significant advantage; whereas it results to be relevant for low inter-class variability classification, specifically when initialized with ImageNet weights.

Conclusions: Contrastive learning approaches are typically used when a large number of unlabeled data is available, which is not representative of US datasets. We proved that SimClr either as pre-training with backbone initialized via ImageNet weights or used in an end-to-end dual-task may impact positively the performance over standard transfer learning approaches, under a scenario in which the dataset is small and characterized by low inter-class variability.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.compbiomed.2024.108430DOI Listing

Publication Analysis

Top Keywords

contrastive learning
20
inter-class variability
16
high inter-class
8
variability classification
8
low inter-class
8
initialized imagenet
8
learning approaches
8
contrastive
5
learning
5
learning standard-plane
4

Similar Publications

To develop and validate a deep-learning-based algorithm for automatic identification of anatomical landmarks and calculating femoral and tibial version angles (FTT angles) on lower-extremity CT scans. In this IRB-approved, retrospective study, lower-extremity CT scans from 270 adult patients (median age, 69 years; female to male ratio, 235:35) were analyzed. CT data were preprocessed using contrast-limited adaptive histogram equalization and RGB superposition to enhance tissue boundary distinction.

View Article and Find Full Text PDF

Introduction: Augmented reality (AR) telestration has the potential to completely transform surgical teaching and training. In contrast to traditional telestration and telestration without AR, this systematic review and meta-analysis attempted to thoroughly assess the effect of telestration with AR on a variety of performance metrics, including task completion time, error rates, GOALS task-specific scores, Objective Structured Assessments of Technical Skills (OSATS) task-specific scores, and Global Operative Assessment of Laparoscopic Skills (GOALS) global scores.

Methods: Six relevant publications were included after a thorough literature search was carried out on March 2024 across relevant databases.

View Article and Find Full Text PDF

EndoChat: Grounded multimodal large language model for endoscopic surgery.

Med Image Anal

August 2025

The Chinese University of Hong Kong, 999077, Hong Kong Special Administrative Region of China. Electronic address:

Recently, Multimodal Large Language Models (MLLMs) have demonstrated their immense potential in computer-aided diagnosis and decision-making. In the context of robotic-assisted surgery, MLLMs can serve as effective tools for surgical training and guidance. However, there is still a deficiency of MLLMs specialized for surgical scene understanding in endoscopic procedures.

View Article and Find Full Text PDF

Benchmarking AI-driven acoustic monitoring for floating marine debris: Challenges in deep learning-based debris extraction.

Mar Pollut Bull

September 2025

Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba 277-8563, Japan. Electronic address:

Existing studies have identified a substantial amount of invisible floating debris in low-visibility marine environments, in addition to debris on the surface and seabed. These suspended pollutants represent a persistent and dynamic threat to marine ecosystems and maritime safety. Although sonar technology facilitates debris monitoring in low-visibility waters, the automatic extraction of small and weakly contrasted debris targets remains a critical challenge.

View Article and Find Full Text PDF

Purpose: The present study aimed to develop a noninvasive predictive framework that integrates clinical data, conventional radiomics, habitat imaging, and deep learning for the preoperative stratification of MGMT gene promoter methylation in glioma.

Materials And Methods: This retrospective study included 410 patients from the University of California, San Francisco, USA, and 102 patients from our hospital. Seven models were constructed using preoperative contrast-enhanced T1-weighted MRI with gadobenate dimeglumine as the contrast agent.

View Article and Find Full Text PDF