A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Characterization and Simulation of the Interface between a Continuous and Discontinuous Carbon Fiber Reinforced Thermoplastic by Using the Climbing Drum Peel Test Considering Humidity. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The objective of this paper is to investigate the debonding behavior of the interface between continuously and discontinuously fiber reinforced thermoplastics using the climbing drum peel test. The study emphasizes on the importance of considering different climatic boundary conditions on the properties of thermoplastics. Specimens with varying moisture contents, from 0m.% up to above 6m.% are prepared and tested. It is observed that an increase in moisture content from 0m.% to 2m.% results in an increase of the fracture surface energy from 1.07·103J/m2 to 2.40·103J/m2 required to separate the two materials, but a further increase in moisture to 6.35m.% conversely results in a subsequent decrease of the required energy to 1.91·103J/m2. The study presents an explanatory model of increasing plasticization of the polymer due to increased polymer chain mobility, which results in more deformation energy being required to propagate the crack, which is corroborated in SEM investigations of the fracture surface. A further increase in humidity leads to polymer degradation due to hydrolysis, which explains the subsequent reduction of the fracture energy. The experimental set up is modeled numerically for the first time with cohesive surfaces, which could successfully reproduce the effective force-displacement curve in the experiment by varying the interface parameters in the model over an influence length, allowing the conclusion of a process induced variation in the interface properties over a specific consolidation length.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11013600PMC
http://dx.doi.org/10.3390/polym16070976DOI Listing

Publication Analysis

Top Keywords

fiber reinforced
8
climbing drum
8
drum peel
8
peel test
8
increase moisture
8
fracture surface
8
characterization simulation
4
interface
4
simulation interface
4
interface continuous
4

Similar Publications