98%
921
2 minutes
20
With the widespread interest and uptake of super-resolution ultrasound (SRUS) through localization and tracking of microbubbles, also known as ultrasound localization microscopy (ULM), many localization and tracking algorithms have been developed. ULM can image many centimeters into tissue in-vivo and track microvascular flow non-invasively with sub-diffraction resolution. In a significant community effort, we organized a challenge, Ultrasound Localization and TRacking Algorithms for Super-Resolution (ULTRA-SR). The aims of this paper are threefold: to describe the challenge organization, data generation, and winning algorithms; to present the metrics and methods for evaluating challenge entrants; and to report results and findings of the evaluation. Realistic ultrasound datasets containing microvascular flow for different clinical ultrasound frequencies were simulated, using vascular flow physics, acoustic field simulation and nonlinear bubble dynamics simulation. Based on these datasets, 38 submissions from 24 research groups were evaluated against ground truth using an evaluation framework with six metrics, three for localization and three for tracking. In-vivo mouse brain and human lymph node data were also provided, and performance assessed by an expert panel. Winning algorithms are described and discussed. The publicly available data with ground truth and the defined metrics for both localization and tracking present a valuable resource for researchers to benchmark algorithms and software, identify optimized methods/software for their data, and provide insight into the current limits of the field. In conclusion, Ultra-SR challenge has provided benchmarking data and tools as well as direct comparison and insights for a number of the state-of-the art localization and tracking algorithms.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/TMI.2024.3388048 | DOI Listing |
Gen Physiol Biophys
September 2025
Department of Cardiology, The Fourth Affiliated Hospital of Harbin Medical University, Nangang District, Harbin, Heilongjiang, China.
Exosomes derived from various cells have been demonstrated to contribute to cardiac repair by regulating macrophage polarization in myocardial infarction. However, how exosomes secreted from cardiomyocytes under hypoxia-ischemia (Hypo-Exo) regulate macrophage polarization in the local tissues is elusive. This study aimed to determine the underlying mechanisms by which Hypo-Exo polarized M2 macrophages.
View Article and Find Full Text PDFOrthod Craniofac Res
September 2025
Department of Orthodontics, College of Dentistry, University of Florida, Gainesville, Florida, USA.
Objective(s): In this pilot study, exosomes from saliva were isolated and tested for the presence of metabolomic biomarkers for physiological external root resorption and/or pathological alveolar bone resorption.
Settings And Sample Population: Saliva samples of 20 individuals in the mixed dentition stage of dental development.
Materials And Methods: Saliva was obtained from healthy control children with resorbing primary teeth or children with localised aggressive periodontitis (LAP) showing alveolar bone loss but little root resorption.
Pain Manag
September 2025
Minimally Invasive Gynecologic Surgery, Walter Reed National Military Medical Center, Bethesda, MD, USA.
Background: Gynecologic enhanced recovery after surgery (ERAS) pathways have been developed to reduce postoperative narcotic use through multimodal pain management. While incisional injection of local anesthetic is standard practice, regional nerve blockades using liposomal agents are emerging as a promising adjunct technique for post-laparoscopy pain. Current data are conflicting regarding the benefits of regional nerve blocks on postoperative pain after laparoscopic hysterectomy.
View Article and Find Full Text PDFBrain Stimul
September 2025
Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom. Electronic address:
Background: Precisely timed brain stimulation, such as phase-locked deep brain stimulation (PLDBS), offers a promising approach to modulating dysfunctional neural networks by enhancing or suppressing specific oscillations. However, its clinical application has been hindered by the lack of user-friendly systems and the challenge of real-time phase estimation amid stimulation artifacts.
Material And Method: In this work, we developed a clinically translatable PLDBS framework that enables real-time, cycle-by-cycle stimulation using standard amplifiers and a computer-in-the-loop system.
Proc Natl Acad Sci U S A
September 2025
Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven 5600 MB, The Netherlands.
Multivalent binding and the resulting dynamical clustering of receptors and ligands are known to be key features in biological interactions. For optimizing biomaterials capable of similar dynamical features, it is essential to understand the first step of these interactions, namely the multivalent molecular recognition between ligands and cell receptors. Here, we present the reciprocal cooperation between dynamic ligands in supramolecular polymers and dynamic receptors in model cell membranes, determining molecular recognition and multivalent binding via receptor clustering.
View Article and Find Full Text PDF