Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

MicroRNAs are involved in post-transcriptional regulation of gene expression. Due to their regulatory role, microRNAs are differently expressed during specific conditions in healthy and diseased individuals, so microRNAs circulating in the blood could be used as diagnostic and prognostic biomarkers for various diseases and conditions. We want to investigate the variability of circulating microRNAs and bone turnover markers in weekly time intervals in older women. In a single-site longitudinal study, a panel of 19 bone-related miRNAs was measured using the osteomiR RT-qPCR assay in serum samples of 35 postmenopausal women divided into 3 groups: healthy controls ( = 12), low BMD ( = 14), and vertebral fractures ( = 9). Blood samples for measurement of CTX, PINP, OC, and bone ALP were collected once per week for 8 weeks at 9:00 AM after overnight fasting. Serum samples from all participants were analyzed for 19 microRNA bone biomarkers and 4 bone turnover markers over 8 weeks. We analyzed the data using a mixed model analysis of variance and found no significant changes between week-by-week time points in any of the groups. To estimate intraindividual variability between weekly time points, we have calculated the median coefficient of variation (CV). This was between 28.4% and 80.2% for microRNA, with an assay CV of 21.3%. It was between 8.5% and 15.6% for bone turnover markers, with an assay CV of 3.5% to 6.5%. The intraindividual variability was similar between groups. Circulating microRNAs measured in serum had a higher weekly intraindividual variability than bone turnover markers due in part to a higher assay CV.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11008742PMC
http://dx.doi.org/10.1093/jbmrpl/ziae035DOI Listing

Publication Analysis

Top Keywords

bone turnover
20
turnover markers
20
circulating micrornas
12
intraindividual variability
12
micrornas bone
8
weekly time
8
serum samples
8
time points
8
bone
7
micrornas
6

Similar Publications

Intermittent PTH treatment has been used as both an osteoanabolic treatment in osteoporosis and a hormone replacement in hypoparathyroidism for many years. This scoping review compiles and reinterprets studies using histomorphometry supported by bone turnover markers to investigate the elusive cellular effect of intermittent PTH treatment locally within the bone, while illuminating knowledge gaps. Intermittent PTH increases both osteoclast and osteoblast activity within the first 6 months of treatment.

View Article and Find Full Text PDF

The development of functional materials for osteoporosis is essential for effective bone remodeling. In this context, the extraction of biocompatible implantable biomaterials from bio-waste emerges as a valuable strategy, addressing both environmental challenges and promoting human health. The objective of this work was to evaluate the physicochemical properties of the added-value by-product biomaterial (SS-90), extracted from sardine scales (Sardina Pilchardus) and combined with chitosan (SS-90-CH).

View Article and Find Full Text PDF

Long-duration spaceflight exposes astronauts to various stressors that can alter human physiology, potentially causing immediate and long-term health effects. These stressors can damage biomolecules, cells, tissues, and organs, leading to adverse outcomes. Developing adverse outcome pathways (AOPs) relevant to radiation exposure can guide research priorities and inform risk assessments of future space exploration activities.

View Article and Find Full Text PDF

Hyaluronic acid promotes biomineralization of osteoblast-like cells - observations on two different barrier membranes.

Int J Implant Dent

September 2025

Department of Periodontology, Center for Biomedical Education and Research (ZBAF), School of Dentistry, Faculty of Health, Witten/Herdecke University, Witten, Germany.

Background: Guided bone regeneration (GBR) relies on biocompatible membranes to support osteogenesis. 1,4-butanediol diglycidyl ether (BDDE)-crosslinked hyaluronic acid (xHyA) has shown promise in enhancing bone regeneration, yet its mechanisms remain unclear.

Objective: This study evaluates the osteogenic effects of xHyA-functionalized native pericardium collagen membrane (NPCM) and ribose-crosslinked collagen membrane (RCCM) using an airlift culture model with SaOS-2 cells.

View Article and Find Full Text PDF

Interaction between diabetes and osteoporosis: imbalance between inflammation and bone remodeling.

Osteoporos Int

September 2025

Department of Endocrinology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400037, China.

Diabetes and osteoporosis are common chronic diseases worldwide, and there is a complex pathological relationship between the two. Due to hyperglycemia, insulin resistance, and accumulation of advanced glycation end products (AGEs), diabetic patients often show a higher risk of fractures. At the same time, chronic low-grade inflammation and oxidative stress caused by diabetes also play an important role in the occurrence of osteoporosis, disrupting the balance of bone remodeling.

View Article and Find Full Text PDF