Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Aim: The study's objective was to assess the dimensional accuracy of hybrid polyether and polyvinyl siloxane materials for implant impressions.

Materials And Methods: Nine groups were created from 45 samples of various building materials and construction techniques from the study. Five samples were tested, and 45 impressions were recorded.

Results: The hybrid non-splinted technique has improved implant site replication, accuracy, and low interimplant distance alterations.

Conclusion: The finest possible reproduction of implant sites on the master cast was made feasible by the use of an open, non-splinted method and a hybrid polyvinyl siloxane-polyether impression material.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11000955PMC
http://dx.doi.org/10.4103/jpbs.jpbs_886_23DOI Listing

Publication Analysis

Top Keywords

evaluation dimensional
4
dimensional change
4
change elastomeric
4
elastomeric impression
4
impression materials
4
materials implants
4
implants original
4
original aim
4
aim study's
4
study's objective
4

Similar Publications

Segmentectomies Made Easy series: robotic-assisted left S1 and S2 segmentectomy.

Multimed Man Cardiothorac Surg

September 2025

Department of Cardiothoracic Surgery, St George’s Hospital, St George's University Hospitals NHS Foundation Trust, London, UK

Three-dimensional (3D) guided robotic-assisted thoracic surgery is increasingly recognized as a leading technique for undertaking the most complex pulmonary resections, providing high-definition 3D visualization, advanced instrument control and tremor-free tissue handling. Compared with open thoracotomy, the robotic platform offers reduced peri-operative complications, shorter hospital stays and faster patient recovery. Nevertheless, sublobar resections, such as segmentectomies, remain both anatomically intricate and technically challenging, particularly when resecting multiple segments, as in this left S1 and S2 segmentectomy.

View Article and Find Full Text PDF

Objective: The aim of this study is to evaluate the prognostic performance of a nomogram integrating clinical parameters with deep learning radiomics (DLRN) features derived from ultrasound and multi-sequence magnetic resonance imaging (MRI) for predicting survival, recurrence, and metastasis in patients diagnosed with triple-negative breast cancer (TNBC) undergoing neoadjuvant chemotherapy (NAC).

Methods: This retrospective, multicenter study included 103 patients with histopathologically confirmed TNBC across four institutions. The training group comprised 72 cases from the First People's Hospital of Lianyungang, while the validation group included 31 cases from three external centers.

View Article and Find Full Text PDF

Purpose: This study aimed to compare the dimensional and positional deviations of additively manufactured removable dies fabricated using two bio-based resins and one conventional dental cast resin, while also evaluating these outcomes over a 4-week period.

Materials And Methods: A right mandibular first molar preparation on a typodont was scanned to digitally design removable dies and hollow partial arch casts. Based on a priori power analysis, a total of 30 dies (n = 10) and three hollow casts (n = 1) were fabricated using additive manufacturing (AM) from three different dental cast resins: DentaMODEL (DM), FotoDent bio-based model (CB), and soy-based resin (SB).

View Article and Find Full Text PDF

Drug-induced hepatotoxicity (DIH), characterized by diverse phenotypes and complex mechanisms, remains a critical challenge in drug discovery. To systematically decode this diversity and complexity, we propose a multi-dimensional computational framework integrating molecular structure analysis with disease pathogenesis exploration, focusing on drug-induced intrahepatic cholestasis (DIIC) as a representative DIH subtype. First, a graph-based modularity maximization algorithm identified DIIC risk genes, forming a DIIC module and eight disease pathogenesis clusters.

View Article and Find Full Text PDF

Purpose: To evaluate choroidal vasculature using a novel three-dimensional algorithm in fellow eyes of patients with unilateral chronic central serous chorioretinopathy (cCSC).

Methods: Patients with unilateral cCSC were retrospectively included. Automated choroidal segmentation was conducted using a deep-learning ResUNet model.

View Article and Find Full Text PDF