A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Predicting the risk of neurocognitive decline after brain irradiation in adult patients with a primary brain tumor. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: Deterioration of neurocognitive function in adult patients with a primary brain tumor is the most concerning side effect of radiotherapy. This study aimed to develop and evaluate normal-tissue complication probability (NTCP) models using clinical and dose-volume measures for 6-month, 1-year, and 2-year Neurocognitive Decline (ND) postradiotherapy.

Methods: A total of 219 patients with a primary brain tumor treated with radical photon and/or proton radiotherapy (RT) between 2019 and 2022 were included. Controlled oral word association test, Hopkins verbal learning test-revised, and trail making test were used to objectively measure ND. A comprehensive set of potential clinical and dose-volume measures on several brain structures were considered for statistical modeling. Clinical, dose-volume and combined models were constructed and internally tested in terms of discrimination (area under the curve, AUC), calibration (mean absolute error, MAE), and net benefit.

Results: Fifty percent, 44.5%, and 42.7% of the patients developed ND at 6-month, 1-year, and 2-year time points, respectively. The following predictors were included in the combined model for 6-month ND: age at radiotherapy > 56 years (OR = 5.71), overweight (OR = 0.49), obesity (OR = 0.35), chemotherapy (OR = 2.23), brain V20 Gy ≥ 20% (OR = 3.53), brainstem volume ≥ 26 cc (OR = 0.39), and hypothalamus volume ≥ 0.5 cc (OR = 0.4). Decision curve analysis showed that the combined models had the highest net benefits at 6-month (AUC = 0.79, MAE = 0.021), 1-year (AUC = 0.72, MAE = 0.027), and 2-year (AUC = 0.69, MAE = 0.038) time points.

Conclusions: The proposed NTCP models use easy-to-obtain predictors to identify patients at high risk of ND after brain RT. These models can potentially provide a base for RT-related decisions and post-therapy neurocognitive rehabilitation interventions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11300005PMC
http://dx.doi.org/10.1093/neuonc/noae035DOI Listing

Publication Analysis

Top Keywords

patients primary
12
primary brain
12
brain tumor
12
clinical dose-volume
12
neurocognitive decline
8
adult patients
8
ntcp models
8
dose-volume measures
8
6-month 1-year
8
1-year 2-year
8

Similar Publications