A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Morphology of Microchips in the Surface Finishing Process Utilizing Abrasive Films. | LitMetric

Morphology of Microchips in the Surface Finishing Process Utilizing Abrasive Films.

Materials (Basel)

Laboratoire de Tribologie et Dynamique des Systemes (LTDS), Ecole Centrale de Lyon, Centre National de la Recherche Scientifique, 69134 Lyon, France.

Published: January 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

In this study, the surface of new lapping films was analyzed, and the lapping finishing process was applied to RG7 tin bronze alloy. The research focused on examining lapping films with electrocorundum grains of nominal sizes 30, 12, and 9 μm, commonly used for achieving smooth surfaces. The manufacturing process involves placing abrasive grains and binder onto a polyester tape, resulting in a heterogeneous distribution of abrasive grains. The study investigates the impact of this random distribution on the performance of lapping films during material removal. Scanning electron microscopy was used to analyze the surface structure of abrasive films, revealing distinctive structures formed by the specific aggregation of abrasive grains. This study explores the influence of different nominal grain sizes on surface finish and aims to optimize lapping processes for diverse applications. The research also delves into microchip analysis, examining the products of the lapping film finishing process. Microchips were observed directly on the abrasive tool surface, revealing insights into their morphology and distribution. The chip segmentation frequency was determined, and they amounted to approximately 0.8 to 3 MHz; these are very high frequencies, which are unique for known chip-forming processes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10856731PMC
http://dx.doi.org/10.3390/ma17030688DOI Listing

Publication Analysis

Top Keywords

finishing process
12
lapping films
12
abrasive grains
12
abrasive films
8
grains study
8
abrasive
6
lapping
6
surface
5
films
5
morphology microchips
4

Similar Publications