98%
921
2 minutes
20
Increased exposure to environmental stresses due to climate change have adversely affected plant growth and productivity. Upon stress, plants activate a signaling cascade, involving multiple molecules like HO and plant hormones such as salicylic acid (SA) leading to resistance or stress adaptation. However, the temporal ordering and composition of the resulting cascade remains largely unknown. In this study we developed a nanosensor for SA and multiplexed it with HO nanosensor for simultaneous monitoring of stress-induced HO and SA signals when Brassica rapa subsp. Chinensis (Pak choi) plants were subjected to distinct stress treatments, namely light, heat, pathogen stress and mechanical wounding. Nanosensors reported distinct dynamics and temporal wave characteristics of HO and SA generation for each stress. Based on these temporal insights, we have formulated a biochemical kinetic model that suggests the early HO waveform encodes information specific to each stress type. These results demonstrate that sensor multiplexing can reveal stress signaling mechanisms in plants, aiding in developing climate-resilient crops and pre-symptomatic stress diagnoses.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10997764 | PMC |
http://dx.doi.org/10.1038/s41467-024-47082-1 | DOI Listing |
Nephrol Dial Transplant
September 2025
Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.
Background: We investigated circulating protein profiles and molecular pathways among various chronic kidney disease (CKD) etiologies to study its underlying molecular heterogeneity.
Methods: We conducted a proteomic biomarker analysis in the DAPA-CKD trial recruiting adults with and without type 2 diabetes with an eGFR of 25 to 75 mL/min/1.73m2 and a UACR of 200 to 5000 mg/g.
Biosci Biotechnol Biochem
September 2025
College of Life Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga 525-8577, Japan.
Selenium is an essential trace element in many organisms but becomes toxic at elevated concentrations. At moderately increased, non-lethal levels, selenite triggers both selenium utilization and stress responses in microorganisms. However, the thresholds of such responses in archaea remain poorly understood.
View Article and Find Full Text PDFJMIR Res Protoc
September 2025
Department of Development & Environmental Studies, Palacký University Olomouc, Olomouc, Czech Republic.
Background: Children in low- and middle-income countries face obstacles to optimal language and cognitive development due to a variety of factors related to adverse socioeconomic conditions. One of these factors is compromised caregiver-child interactions and associated pressures on parenting. Early development interventions, such as dialogic book-sharing (DBS), address this variable, with evidence from both high-income countries and urban areas of low- and middle-income countries showing that such interventions enhance caregiver-child interaction and the associated benefits for child cognitive and socioemotional development.
View Article and Find Full Text PDFJ Anim Sci
September 2025
Department of Animal Sciences, Laval University, Québec, QC G1V 0A6, Canada.
In pig production, weaning is a critical period where piglets face several environmental stressors. This transition leads to a significant growth reduction and can result in digestive disorders, including diarrhea. To formulate a feed that meets zinc (Zn) and copper (Cu) requirements during the weaning period while minimizing their release into the environment, it became evident that a more bioavailable micro-mineral supplement is necessary.
View Article and Find Full Text PDF