A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Characterizing multimorbidity in ALIVE: comparing single and ensemble clustering methods. | LitMetric

Characterizing multimorbidity in ALIVE: comparing single and ensemble clustering methods.

Am J Epidemiol

Department of Epidemiology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, United States.

Published: August 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Multimorbidity, defined as having 2 or more chronic conditions, is a growing public health concern, but research in this area is complicated by the fact that multimorbidity is a highly heterogenous outcome. Individuals in a sample may have a differing number and varied combinations of conditions. Clustering methods, such as unsupervised machine learning algorithms, may allow us to tease out the unique multimorbidity phenotypes. However, many clustering methods exist, and choosing which to use is challenging because we do not know the true underlying clusters. Here, we demonstrate the use of 3 individual algorithms (partition around medoids, hierarchical clustering, and probabilistic clustering) and a clustering ensemble approach (which pools different clustering approaches) to identify multimorbidity clusters in the AIDS Linked to the Intravenous Experience cohort study. We show how the clusters can be compared based on cluster quality, interpretability, and predictive ability. In practice, it is critical to compare the clustering results from multiple algorithms and to choose the approach that performs best in the domain(s) that aligns with plans to use the clusters in future analyses.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11299029PMC
http://dx.doi.org/10.1093/aje/kwae031DOI Listing

Publication Analysis

Top Keywords

clustering methods
12
clustering
8
characterizing multimorbidity
4
multimorbidity alive
4
alive comparing
4
comparing single
4
single ensemble
4
ensemble clustering
4
multimorbidity
4
methods multimorbidity
4

Similar Publications