Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Neurons in the hippocampus exhibit spontaneous spiking activity during rest that appears to recapitulate previously experienced events. While this replay activity is frequently linked to memory consolidation and learning, the underlying mechanisms are not well understood. Recent large-scale neural recordings in mice have demonstrated that resting-state spontaneous activity is expressed as quasi-periodic cascades of spiking activity that pervade the forebrain, with each cascade engaging a high proportion of recorded neurons. Hippocampal ripples are known to be coordinated with cortical dynamics; however, less is known about the occurrence of replay activity relative to other brain-wide spontaneous events. Here we analyzed responses across the mouse brain to multiple viewings of natural movies, as well as subsequent patterns of neural activity during rest. We found that hippocampal neurons showed time-selectivity, with individual neurons responding consistently during particular moments of the movie. During rest, the population of time-selective hippocampal neurons showed both forward and time-reversed replay activity that matched the sequence observed in the movie. Importantly, these replay events were strongly time-locked to brain-wide spiking cascades, with forward and time-reversed replay activity associated with distinct cascade types. Thus, intrinsic hippocampal replay activity is temporally structured according to large-scale spontaneous physiology affecting areas throughout the forebrain. These findings shed light on the coordination between hippocampal and cortical circuits thought to be critical for memory consolidation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10983782 | PMC |
http://dx.doi.org/10.1093/pnasnexus/pgae078 | DOI Listing |