Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Magnetoencephalography (MEG) measures brain function via assessment of magnetic fields generated by neural currents. Conventional MEG uses superconducting sensors, which place significant limitations on performance, practicality, and deployment; however, the field has been revolutionised in recent years by the introduction of optically-pumped-magnetometers (OPMs). OPMs enable measurement of the MEG signal without cryogenics, and consequently the conception of 'OPM-MEG' systems which ostensibly allow increased sensitivity and resolution, lifespan compliance, free subject movement, and lower cost. However, OPM-MEG remains in its infancy with limitations on both sensor and system design. Here, we report a new OPM-MEG design with miniaturised and integrated electronic control, a high level of portability, and improved sensor dynamic range (arguably the biggest limitation of existing instrumentation). We show that this system produces equivalent measures when compared to an established instrument; specifically, when measuring task-induced beta-band, gamma-band and evoked neuro-electrical responses, source localisations from the two systems were highly comparable and temporal correlation was >0.7 at the individual level and >0.9 for groups. Using an electromagnetic phantom, we demonstrate improved dynamic range by running the system in background fields up to 8 nT. We show that the system is effective in gathering data during free movement (including a sitting-to-standing paradigm) and that it is compatible with simultaneous electroencephalography (EEG - the clinical standard). Finally, we demonstrate portability by moving the system between two laboratories. Overall, our new system is shown to be a significant step forward for OPM-MEG technology and offers an attractive platform for next generation functional medical imaging.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10979878PMC
http://dx.doi.org/10.1101/2024.03.06.583313DOI Listing

Publication Analysis

Top Keywords

dynamic range
8
system
6
novel robust
4
robust portable
4
portable platform
4
platform magnetoencephalography
4
magnetoencephalography optically
4
optically pumped
4
pumped magnetometers
4
magnetometers magnetoencephalography
4

Similar Publications

Distinct codon usage signatures reflecting evolutionary and pathogenic adaptation in the Acinetobacter baumannii complex.

Eur J Clin Microbiol Infect Dis

September 2025

School of Bioengineering and Biosciences, Department of Biochemistry, Lovely Professional University, Punjab, 144411, India.

Purpose: This study investigates codon usage and amino acid usage bias in the genus Acinetobacter to uncover the evolutionary forces shaping these patterns and their implications for pathogenicity and biotechnology.

Methods: Codon usage patterns were examined in representative genomes of the genus Acinetobacter using standard codon bias indices, including GC content, relative synonymous codon usage (RSCU), effective number of codons (ENC), and codon adaptation index (CAI). Neutrality and parity plots were employed to evaluate the relative influence of mutational pressure and natural selection on codon preferences.

View Article and Find Full Text PDF

Design and synthesis of novel indolinone Aurora B kinase inhibitors based on fragment-based drug discovery (FBDD).

Mol Divers

September 2025

State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, 830011, Xinjiang, China.

Aurora kinases are a group of serine/threonine kinases essential for cell mitosis, comprising Aurora A, B, and C. However, the Aurora B is overexpressed in multiple tumors and the aurone has been proved to exhibit potent inhibitory activity against Aurora B kinase by our group. The indolinone was considered as an aurone scaffold hopping analog, and the indolinone-based Aurora B inhibitor library (3577 molecules) was constructed by FBDD strategy.

View Article and Find Full Text PDF

This study develops an integrated X-ray absorption spectroscopy (XAS) photoemission electron microscopy (PEEM) platform on beamline BL09U at the Shanghai Synchrotron Radiation Facility (SSRF), enabling nanoscale characterization of complex materials through energy-resolved imaging and local-area XAS. By using the wide range of energy tunability, full access to different polarizations and PEEM's surface sensitivity, we have established a gap-monochromator control system under the EPICS framework to synchronize the elliptically polarized undulator (EPU) gap and monochromator energy dynamically, optimizing photon flux stability for absorption fine structure analysis. Combining X-ray magnetic circular dichroism (XMCD) and X-ray magnetic linear dichroism (XMLD) with PEEM and local-area XAS, this platform achieves concurrent mapping of electronic structures and magnetic domains in ferromagnetic nano-patterns, as demonstrated through our studies of NiFe Permalloy using this system.

View Article and Find Full Text PDF

Host defense and pathogen virulence interact and mutually shape each other's evolution. Host-pathogen co-evolutionary outcomes have potentially significant impacts on population dynamics and vice versa. To investigate host-pathogen interactions and explore the impact of micro-level co-evolutionary outcomes on macro-level epidemics, we develop a co-evolutionary model with a combined host-defense strategy.

View Article and Find Full Text PDF