Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: Machine learning (ML) approaches have become increasingly popular in predicting surgical outcomes. However, it is unknown whether they are superior to traditional statistical methods such as logistic regression (LR). This study aimed to perform a systematic review and meta-analysis to compare the performance of ML vs LR models in predicting postoperative outcomes for patients undergoing gastrointestinal (GI) surgery.

Methods: A systematic search of Embase, MEDLINE, Cochrane, Web of Science, and Google Scholar was performed through December 2022. The primary outcome was the discriminatory performance of ML vs LR models as measured by the area under the receiver operating characteristic curve (AUC). A meta-analysis was then performed using a random effects model.

Results: A total of 62 LR models and 143 ML models were included across 38 studies. On average, the best-performing ML models had a significantly higher AUC than the LR models (ΔAUC, 0.07; 95% CI, 0.04-0.09; P < .001). Similarly, on average, the best-performing ML models had a significantly higher logit (AUC) than the LR models (Δlogit [AUC], 0.41; 95% CI, 0.23-0.58; P < .001). Approximately half of studies (44%) were found to have a low risk of bias. Upon a subset analysis of only low-risk studies, the difference in logit (AUC) remained significant (ML vs LR, Δlogit [AUC], 0.40; 95% CI, 0.14-0.66; P = .009).

Conclusion: We found a significant improvement in discriminatory ability when using ML over LR algorithms in predicting postoperative outcomes for patients undergoing GI surgery. Subsequent efforts should establish standardized protocols for both developing and reporting studies using ML models and explore the practical implementation of these models.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.gassur.2024.03.006DOI Listing

Publication Analysis

Top Keywords

machine learning
8
postoperative outcomes
8
systematic review
8
review meta-analysis
8
performance models
8
models
6
learning improves
4
improves prediction
4
prediction postoperative
4
outcomes gastrointestinal
4

Similar Publications

Background: A clear understanding of minimal clinically important difference (MCID) and substantial clinical benefit (SCB) is essential for effectively implementing patient-reported outcome measurements (PROMs) as a performance measure for total knee arthroplasty (TKA). Since not achieving MCID and SCB may reflect suboptimal surgical benefit, the primary aim of this study was to use machine learning to predict patients who may not achieve the threshold-based outcomes (i.e.

View Article and Find Full Text PDF

Arthroplasty surgery is a common and successful end-stage intervention for advanced osteoarthritis. Yet, postoperative outcomes vary significantly among patients, leading to a plethora of measures and associated measurement approaches to monitor patient outcomes. Traditional approaches rely heavily on patient-reported outcome measures (PROMs), which are widely used, but often lack sensitivity to detect function changes (e.

View Article and Find Full Text PDF

Automatic markerless estimation of infant posture and motion from ordinary videos carries great potential for movement studies "in the wild", facilitating understanding of motor development and massively increasing the chances of early diagnosis of disorders. There has been a rapid development of human pose estimation methods in computer vision, thanks to advances in deep learning and machine learning. However, these methods are trained on datasets that feature adults in different contexts.

View Article and Find Full Text PDF

This study aims to investigate the predictive value of combined phenotypic age and phenotypic age acceleration (PhenoAgeAccel) for benign prostatic hyperplasia (BPH) and develop a machine learning-based risk prediction model to inform precision prevention and clinical management strategies. The study analyzed data from 784 male participants in the US National Health and Nutrition Examination Survey (NHANES, 2001-2008). Phenotypic age was derived from chronological age and nine serum biomarkers.

View Article and Find Full Text PDF

Bariatric surgery is an effective treatment for morbid obesity, but patient outcomes differ greatly because of a variety of phenotypes, comorbidities, and postoperative adherence. In bariatric care, artificial intelligence (AI) and machine learning (ML) are becoming revolutionary tools because traditional predictive models based on BMI and demographic variables are unable to account for these complexities. To put it simply, AI is a branch of computer science that enables machines to perform tasks that typically require human intelligence.

View Article and Find Full Text PDF