A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Multichannel Hierarchical Analysis of Time-Resolved Hyperspectral Data for Advanced Colorimetric E-Nose. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The colorimetric sensor-based electronic nose has been demonstrated to discriminate specific gaseous molecules for various applications, including health or environmental monitoring. However, conventional colorimetric sensor systems rely on RGB sensors, which cannot capture the complete spectral response of the system. This limitation can degrade the performance of machine learning analysis, leading to inaccurate identification of chemicals with similar functional groups. Here, we propose a novel time-resolved hyperspectral (TRH) data set from colorimetric array sensors consisting of 1D spatial, 1D spectral, and 1D temporal axes, which enables hierarchical analysis of multichannel 2D spectrograms via a convolution neural network (CNN). We assessed the outstanding classification performance of the TRH data set compared to an RGB data set by conducting a relative humidity (RH) concentration classification. The time-dependent spectral response of the colorimetric sensor was measured and trained as a CNN model using TRH and RGB sensor systems at different RH levels. While the TRH model shows a high classification accuracy of 97.5% for the RH concentration, the RGB model yields 72.5% under identical conditions. Furthermore, we demonstrated the detection of various functional volatile gases with the TRH system by using experimental and simulation approaches. The results reveal distinct spectral features from the TRH system, corresponding to changes in the concentration of each substance.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acssensors.3c02663DOI Listing

Publication Analysis

Top Keywords

data set
12
hierarchical analysis
8
time-resolved hyperspectral
8
colorimetric sensor
8
sensor systems
8
spectral response
8
trh data
8
trh system
8
trh
6
colorimetric
5

Similar Publications