A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Attapulgite-Based Stable Superhydrophobic Coatings for Preventing Rain Attenuation of 5G Radomes. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Superhydrophobic coatings hold immense promise for various applications. However, their practical use is currently hindered by issues such as poor stability, high costs, and complex preparation processes. Here, we present the preparation of cost-effective and stable superhydrophobic coatings through fluorination of natural attapulgite (F-ATP) nanorods and subsequent solvent-induced phase separation of a silicone-modified polyester adhesive (SMPA) with the F-ATP nanorods dispersed in it. Phase separation of the F-ATP/SMPA system forms a uniform suspension of microaggregates, which can be easily utilized for preparing superhydrophobic coatings via spray coating. The coatings have a low-surface-energy hierarchical micro/nanostructure due to phase separation of SMPA and adhesion of F-ATP to it. Moreover, the effects of the solvent composition (i.e., phase separation degree of SMPA) and the SMPA/F-ATP mass ratio on the morphology, superhydrophobicity, and stability of the coatings were investigated. After systematic optimization, the coatings exhibit excellent static and dynamic superhydrophobicity as well as high mechanical, chemical, thermal, and UV aging stability. Finally, the coatings were applied to the 5G radome surface and showed good rain attenuation prevention performance. Thus, we are confident that the superhydrophobic coatings have great application potential due to their advantages of outstanding performance, straightforward preparation procedures, cost-effectiveness, etc.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.langmuir.4c00492DOI Listing

Publication Analysis

Top Keywords

superhydrophobic coatings
20
phase separation
16
coatings
9
stable superhydrophobic
8
rain attenuation
8
f-atp nanorods
8
superhydrophobic
5
attapulgite-based stable
4
coatings preventing
4
preventing rain
4

Similar Publications