Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
To improve the mess-specific activity of Co supported on zeolite catalysts in Fischer-Tropsch (FT) synthesis, the Co-MCM-22 catalyst was prepared by simply grinding the MCM-22 with nanosized CoO prefabricated by the thermal decomposition of the Co(II)-glycine complex. It is found that this novel strategy is effective for improving the mess-specific activity of Co catalysts in FT synthesis compared to the impregnation method. Moreover, the ion exchange and calcination sequence of MCM-22 has a significant influence on the dispersion, particle size distribution, and reduction degree of Co. The Co-MCM-22 prepared by the physical grinding of prefabricated CoO and H-type MCM-22 without a further calcination process exhibits a moderate interaction between CoO and MCM-22, which results in the higher reduction degree, higher dispersion, and higher mess-specific activity of Co. Thus, the newly developed method is more controllable and promising for the synthesis of metal-supported catalysts.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10975715 | PMC |
http://dx.doi.org/10.3390/molecules29061283 | DOI Listing |