Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Colorectal cancer is the most common cancer that affects both sexes and has a poor prognosis due to aggressiveness and chemoresistance. Essential oils isolated from (CF-EOs) have been shown to demonstrate anti-termite, antifungal, anti-mosquito, and anti-microbial activities. However, the anticancer effects of CF-EOs are not yet fully understood. Therefore, the present study aimed to explore the molecular mechanism underlying CF-EOs-mediated anti-proliferative activity in colon cancer cells. Here, cell impedance measurements showed that CF-EOs inhibit proliferation in colon cancer cells with wild-type or mutant p53. Flow cytometry revealed that CF-EOs at 20, 50 µg/mL significantly induced ROS generation and autophagy in both HCT116 p53-wt and HCT116 p53-null cell lines, whereas pretreatment with the ROS scavenger N-acetyl cysteine (NAC) markedly attenuated these changes. CF-EOs also induced apoptosis at 50 µg/mL in both lines, as determined by flow cytometry. Protein analysis showed that CF-EOs markedly induced apoptosis markers, including Trail, cleaved caspase-3, cleaved caspase-9, and cleaved PARP, as well as autophagy markers, such as the levels of ULK1, Atg5, Atg6, Atg7, and the conversion of LC3-I to LC3-II. CF-EOs were further found to inhibit the activity and expression of the NAD-dependent deacetylase SIRT1 to increase the levels of acetylated p53 (Ac-p53) in p53-wt cells and acetylated c-Myc (Ac-c-Myc) in p53-null cells, ultimately inducing apoptosis in both lines. Interestingly, suppression of SIRT1 by CF-EOs enhanced the acetylation of ULK1, which in turn prompted ROS-dependent autophagy in colon cancer cells. The induction of apoptosis and autophagy by CF-EOs suggests that they may have potential as a promising new approach for treating cancer. Collectively, our results suggest that essential oils isolated from act as a promising anticancer agent against colon cancer cells by targeting SIRT1 to induce ROS-mediated autophagy and apoptosis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10967316 | PMC |
http://dx.doi.org/10.3390/antiox13030284 | DOI Listing |