98%
921
2 minutes
20
As China's coal mines have transitioned to deep mining, the ground stress within the coal seams has progressively increased, resulting in reduced permeability and poor wetting ability of conventional wetting agents. Consequently, these agents have become inadequate in fulfilling the requirements for preventing washouts during deep mining operations. In response to the aforementioned challenges, a solution was proposed to address the issues by formulating a composite wetting agent. This composite wetting agent combines a conventional surfactant with a chelating agent called tetrasodium iminodisuccinate (IDS). By conducting a meticulous screening of surfactant monomer solutions, the ideal formulation for the composite wetting agent was determined by combining the monomer surfactant with IDS. Extensive testing, encompassing evaluations of the composite solution's apparent strain, contact angle measurements, and alterations in the oxygenated functional groups on the coal surface, led to the identification of the optimal composition. This composition consisted of IDS serving as the chelating agent and fatty alcohol polyoxyethylene ether (JFCS).Subsequent assessment of the physical and mechanical performance of the coal briquettes treated with the composite wetting agent revealed notable enhancements. These findings signify significant advancements in the field and hold promising implications. Following the application of the composite wetting agent, notable reductions were observed in the dry basis ash and dry basis full sulfur of coal. Additionally, the water content within the coal mass increased significantly, leading to a substantial enhancement in the wetting effect of the coal body. This enhanced wetting effect effectively mitigated the coal body's inclination towards impact, thereby offering technical support for optimizing water injection into coal seams and preventing as well as treating impact ground pressure.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10966006 | PMC |
http://dx.doi.org/10.1038/s41598-024-57443-x | DOI Listing |
Langmuir
September 2025
State Key Laboratory for Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China.
In this work, we successfully transformed poly(vinyl alcohol) (PVA) thin films into all-purpose, self-cleaning coatings with unprecedented mechanical durability by using dimethyl sulfoxide (DMSO) as a casting or wetting solvent, followed by high-temperature curing. These coatings effectively cleanse themselves not only of liquid oil and solidified wax upon simple water action but also of ice with gentle airflow within several seconds, even after 100 cycles of destructive surface scratching. Surface-specific spectroscopic analysis revealed that, owing to DMSO acting as a hydrogen-bond-accepting capping agent, nearly all of the OH groups in the PVA coatings─both in the bulk phase and on the surfaces─were effectively prevented from forming hydrogen bonds and, simultaneously, thermodynamically driven to orient outward, minimizing surface energy in air.
View Article and Find Full Text PDFJ Funct Biomater
August 2025
Department of Periodontology, Faculty of Dental Medicine, "Grigore T. Popa" University of Medicine and Pharmacy, Str. Universitatii 16, 700115 Iasi, Romania.
In pediatric endodontic procedures, final crown placement is often delayed, requiring the use of temporary filling materials to seal the access cavity. Given the importance of antibacterial properties in temporary restorations and the known antimicrobial effects of nanoclay particles, this study aimed to evaluate the antibacterial efficacy of a nanoclay-infused temporary dressing against cariogenic and residual intracanal bacteria. A commercial temporary material (CAVISOL, Tehran, Iran) was blended with nanoclay (SOUTHERN, Gonzalez, TX, USA; average size 95 nm), using eugenol as a wetting agent.
View Article and Find Full Text PDFWater Res
August 2025
State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
Per- and polyfluoroalkyl substances (PFAS) have been extensively used in the electroplating globally, yet the source characterization remains inadequately quantified. This study provides a high-resolution characterization of PFAS for the Chinese electroplating industry by combining target and nontarget analysis of samples, including chrome mist suppressants, plating bath solutions, wastewater, and sludge. A total of 91 PFAS homologues, spanning 14 classes, were identified by nontarget analysis.
View Article and Find Full Text PDFInorg Chem
September 2025
Materials Research and Development Laboratory, Japan Fine Ceramics Center, 2-4-1, Mutsuno, Atsuta-ku, Nagoya, Aichi 456-8587, Japan.
This study demonstrates a sacrificial surface modification employing trimethyl phosphate (TMP) to enhance the phase stability of mesoporous γ-alumina (γ-AlO). TMP was grafted onto the γ-AlO surface via a simple wetting and calcination process. Complementary analyses─including X-ray diffraction, spectroscopy, thermal analysis, and porosity measurements─revealed the formation of three types of TMP moieties on γ-AlO surfaces and their gradual decomposition, subsequent diffusion into alumina, and eventual transformation into aluminum phosphates at elevated temperatures.
View Article and Find Full Text PDFMater Horiz
August 2025
State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 585 He Shuo Road, 201899 Shanghai, China.
Garnet-based all-solid-state lithium batteries encountering high interfacial resistance and lithium dendrite growth face challenges to their practical application. Here, we design a carbon dot (CD) decorated ZnOHF composite interlayer (ZnOHF@CDs), which can not only homogenize the distribution and diffusion of Li ions and electrons driven by the built-in electric field from the LiZn/LiF heterojunction, but also alleviate the diffusion of Li ions to the hot spots (with uneven charge accumulation) mediated by CDs with multiple edge groups. Moreover, the pinned CDs facilitate the additional Li-ion diffusion pathways and mitigate the volume change of LiZn alloy interlayers (even after 7400 h cycling), thereby inhibiting Li dendrite growth.
View Article and Find Full Text PDF