A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Construction of a comprehensive fetal monitoring database for the study of perinatal hypoxic ischemic encephalopathy. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

This article describes the methods used to build a large-scale database of more than 250,000 electronic fetal monitoring (EFM) records linked to a comprehensive set of clinical information about the infant, the mother, the pregnancy, labor, and outcome. The database can be used to investigate how birth outcome is related to clinical and EFM features. The main steps involved in building the database were: (1) Acquiring the raw EFM recording and clinical records for each birth. (2) Assigning each birth to an objectively defined outcome class that included normal, acidosis, and hypoxic-ischemic encephalopathy. (3) Removing all personal health information from the EFM recordings and clinical records. (4) Preprocessing the deidentified EFM records to eliminate duplicates, reformat the signals, combine signals from different sensors, and bridge gaps to generate signals in a format that can be readily analyzed. (5) Post-processing the repaired EFM recordings to extract key features of the fetal heart rate, uterine activity, and their relations. (6) Populating a database that links the clinical information, EFM records, and EFM features to support easy querying and retrieval. •A multi-step process is required to build a comprehensive database linking electronic temporal fetal monitoring signals to a comprehensive set of clinical information about the infant, the mother, the pregnancy, labor, and outcome.•The current database documents more than 250,000 births including almost 4,000 acidosis and 400 HIE cases. This represents more than 80% of the births that occurred in 15 Northern California Kaiser Permanente Hospitals between 2011-2019. This is a valuable resource for studying the factors predictive of outcome.•The signal processing code and schemas for the database are freely available. The database will not be permitted to leave Kaiser firewalls, but a process is in place to allow interested investigators to access it.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10957432PMC
http://dx.doi.org/10.1016/j.mex.2024.102664DOI Listing

Publication Analysis

Top Keywords

fetal monitoring
12
efm records
12
database
9
efm
8
comprehensive set
8
set clinical
8
clinical infant
8
infant mother
8
mother pregnancy
8
pregnancy labor
8

Similar Publications