98%
921
2 minutes
20
G-quadruplex (G4) DNA or RNA poses a unique nucleic acid structure in genomic transactions. Because of the unique topology presented by G4, cells have exquisite mechanisms and pathways to metabolize G4 that arise in guanine-rich regions of the genome such as telomeres, promoter regions, ribosomal DNA, and other chromosomal elements. G4 resolvases are often represented by a class of molecular motors known as helicases that disrupt the Hoogsteen hydrogen bonds in G4 by harnessing the chemical energy of nucleoside triphosphate hydrolysis. Of special interest to researchers in the field, including us, is the human FANCJ DNA helicase that efficiently resolves G4 DNA structures. Notably, FANCJ mutations are linked to Fanconi Anemia and are prominent in breast and ovarian cancer. Since our discovery that FANCJ efficiently resolves G4 DNA structures 15 years ago, we and other labs have characterized mechanistic aspects of FANCJ-catalyzed G4 resolution and its biological importance in genomic integrity and cellular DNA replication. In addition to its G4 resolvase function, FANCJ is also a classic DNA helicase that acts on conventional duplex DNA structures, which are relevant to the enzyme's role in interstrand cross link repair, double-strand break repair via homologous recombination, and response to replication stress. Here, we describe detailed procedures for the purification of recombinant FANCJ protein and characterization of its G4 resolvase and duplex DNA helicase activity.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12184075 | PMC |
http://dx.doi.org/10.1016/bs.mie.2023.12.006 | DOI Listing |
Nat Commun
September 2025
Department of Physiological Chemistry, Graduate School of Pharmaceutical Science, The University of Tokyo, Bunkyo, Tokyo, Japan.
Copy number control of DNA and centrosomes is essential for accurate genetic inheritance. DNA replication and centrosome duplication have been recognized as parallel key events for cell division. Here, we discover that the DNA replication machinery directly regulates the licensing and execution processes of centrosome duplication to prevent centrosome amplification.
View Article and Find Full Text PDFZhonghua Bing Li Xue Za Zhi
September 2025
Department of Pathology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China.
Zhonghua Bing Li Xue Za Zhi
September 2025
Department of Pathology, the First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, China.
To investigate the clinicopathological features of SMARCA4-deficient uterine sarcoma. Five cases of SMARCA4-deficient uterine sarcoma at the Department of Pathology, the First Affiliated Hospital of Nanjing Medical University from 2018 to 2024 were collected. The morphological and immunohistochemical features were observed and analyzed.
View Article and Find Full Text PDFBlood Adv
September 2025
Institut de Recherches Cliniques de Montreal - IRCM, Montreal, Quebec, Canada.
Acute myeloid leukemia (AML) with rearrangement of the mixed lineage leukemia gene express MLL-AF9 fusion protein, a transcription factor that impairs differentiation and drives expansion of leukemic cells. We report here that the zinc finger protein GFI1 together with the histone methyltransferase LSD1 occupies the promoter and regulates expression of the lncRNA ELDR in the MLL-r AML cell line THP-1. Forced ELDR overexpression enhanced the growth inhibition of an LSD1i/ATRA combination treatment and reduced the capacity of these cells to generate leukemia in xenografts, leading to a longer leukemia-free survival.
View Article and Find Full Text PDFElife
September 2025
Graduate School of Life Science, Hokkaido University, Sapporo, Japan.
DNA replication requires recruitment of Cdc45 and GINS into the MCM double hexamer by initiation factors to form an active helicase, the Cdc45-MCM-GINS (CMG) complex, at the replication origins. The initiation factor Sld3 is a central regulator of Cdc45 and GINS recruitment, working with Sld7 together. However, the mechanism through which Sld3 regulates CMG complex formation remains unclear.
View Article and Find Full Text PDF