Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
In-depth profiling of cancer cells/tissues is expanding our understanding of the genomic, epigenomic, transcriptomic, and proteomic landscape of cancer. However, the complexity of the cancer microenvironment, particularly its immune regulation, has made it difficult to exploit the potential of cancer immunotherapy. High-throughput spatial omics technologies and analysis pipelines have emerged as powerful tools for tackling this challenge. As a result, a potential revolution in cancer diagnosis, prognosis, and treatment is on the horizon. In this review, we discuss the technological advances in spatial profiling of cancer around and beyond the central dogma to harness the full benefits of immunotherapy. We also discuss the promise and challenges of spatial data analysis and interpretation and provide an outlook for the future.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.copbio.2024.103111 | DOI Listing |