Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Background: Pseudomyxoma peritonei (PMP) is a rare clinical malignant syndrome, and its rarity causes a lack of pathology research. This study aims to quantitatively analyze HE-stained pathological images (PIs), and develop a new predictive model integrating digital pathological parameters with clinical information.
Methods: Ninety-two PMP patients with complete clinic-pathological information, were included. QuPath was used for PIs quantitative feature analysis at tissue-, cell-, and nucleus-level. The correlations between overall survival (OS) and general clinicopathological characteristics, and PIs features were analyzed. A nomogram was established based on independent prognostic factors and evaluated.
Results: Among the 92 PMP patients, there were 34 (37.0%) females and 58 (63.0%) males, with a median age of 57 (range: 31-76). A total of 449 HE stained images were obtained for QuPath analysis, which extracted 40 pathological parameters at three levels. Kaplan-Meier survival analysis revealed eight clinicopathological characteristics and 20 PIs features significantly associated with OS (p < 0.05). Partial least squares regression was used to screen the multicollinearity features and synthesize four new features. Multivariate survival analysis identified the following five independent prognostic factors: preoperative CA199, completeness of cytoreduction, histopathological type, component one at tissue-level, and tumor nuclei circularity variance. A nomogram was established with internal validation C-index 0.795 and calibration plots indicating improved prediction performance.
Conclusions: The quantitative analysis of HE-stained PIs could extract the new prognostic information on PMP. A nomogram established by five independent prognosticators is the first model integrating digital pathological information with clinical data for improved clinical outcome prediction.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10952024 | PMC |
http://dx.doi.org/10.1002/cam4.7101 | DOI Listing |