A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Generative Variational-Contrastive Learning for Self-Supervised Point Cloud Representation. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Self-supervised representation learning for 3D point clouds has attracted increasing attention. However, existing methods in the field of 3D computer vision generally use fixed embeddings to represent the latent features, and impose hard constraints on the embeddings to make the latent feature values of the positive samples converge to consistency, which limits the ability of feature extractors to generalize over different data domains. To address this issue, we propose a Generative Variational-Contrastive Learning (GVC) model, where Gaussian distribution is used to construct a continuous, smoothed representation of the latent features. A distribution constraint and cross-supervision are constructed to improve the transfer ability of the feature extractor over synthetic and real-world data. Specifically, we design a variational contrastive module to constrain the feature distribution instead of feature values corresponding to each sample in the latent space. Moreover, a generative cross-supervision module is introduced to preserve the invariance features and promote the consistency of feature distribution among positive samples. Experimental results demonstrate that GVC achieves SOTA on different downstream tasks. In particular, with only pre-training on the synthetic dataset, GVC achieves a lead of 8.4% and 14.2% when transferring to the real-world dataset in the linear classification and few-shot classification.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TPAMI.2024.3378708DOI Listing

Publication Analysis

Top Keywords

generative variational-contrastive
8
variational-contrastive learning
8
latent features
8
feature values
8
positive samples
8
ability feature
8
feature distribution
8
gvc achieves
8
feature
6
learning self-supervised
4

Similar Publications