Multimodal Transformer for Property Prediction in Polymers.

ACS Appl Mater Interfaces

Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea.

Published: April 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

In this work, we designed a multimodal transformer that combines both the Simplified Molecular Input Line Entry System (SMILES) and molecular graph representations to enhance the prediction of polymer properties. Three models with different embeddings (SMILES, SMILES + monomer, and SMILES + dimer) were employed to assess the performance of incorporating multimodal features into transformer architectures. Fine-tuning results across five properties (i.e., density, glass-transition temperature (), melting temperature (), volume resistivity, and conductivity) demonstrated that the multimodal transformer with both the SMILES and the dimer configuration as inputs outperformed the transformer using only SMILES across all five properties. Furthermore, our model facilitates in-depth analysis by examining attention scores, providing deeper insights into the relationship between the deep learning model and the polymer attributes. We believe that our work, shedding light on the potential of multimodal transformers in predicting polymer properties, paves a new direction for understanding and refining polymer properties.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.4c01207DOI Listing

Publication Analysis

Top Keywords

multimodal transformer
12
polymer properties
12
smiles dimer
8
transformer smiles
8
smiles
6
multimodal
5
properties
5
transformer property
4
property prediction
4
prediction polymers
4

Similar Publications

Bipolar disorder (BD) is a debilitating mental illness characterized by significant mood swings, posing a substantial challenge for accurate diagnosis due to its clinical complexity. This paper presents CS2former, a novel approach leveraging a dual channel-spatial feature extraction module within a Transformer model to diagnose BD from resting-state functional MRI (Rs-fMRI) and T1-weighted MRI (T1w-MRI) data. CS2former employs a Channel-2D Spatial Feature Aggregation Module to decouple channel and spatial information from Rs-fMRI, while a Channel-3D Spatial Attention Module with Synchronized Attention Module (SAM) concurrently computes attention for T1w-MRI feature maps.

View Article and Find Full Text PDF

AI Model Based on Diaphragm Ultrasound to Improve the Predictive Performance of Invasive Mechanical Ventilation Weaning: Prospective Cohort Study.

JMIR Form Res

September 2025

Department of Critical Care Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangdong Provincial Geriatrics Institute, No. 106, Zhongshaner Rd, Guangzhou, 510080, China, 86 15920151904.

Background: Point-of-care ultrasonography has become a valuable tool for assessing diaphragmatic function in critically ill patients receiving invasive mechanical ventilation. However, conventional diaphragm ultrasound assessment remains highly operator-dependent and subjective. Previous research introduced automatic measurement of diaphragmatic excursion and velocity using 2D speckle-tracking technology.

View Article and Find Full Text PDF

Purpose: Depression among college students is a growing concern that negatively affects academic performance, emotional well-being, and career planning. Existing diagnostic methods are often slow, subjective, and inaccessible, underscoring the need for automated systems that can detect depressive symptoms through digital behavior, particularly on social media platforms.

Method: This study proposes a novel natural language processing (NLP) framework that combines a RoBERTa-based Transformer with gated recurrent unit (GRU) layers and multimodal embeddings.

View Article and Find Full Text PDF

Multimodal self-supervised retinal vessel segmentation.

Neural Netw

September 2025

Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen, China. Electronic address:

Automatic segmentation of retinal vessels from retinography images is crucial for timely clinical diagnosis. However, the high cost and specialized expertise required for annotating medical images often result in limited labeled datasets, which constrains the full potential of deep learning methods. Recent advances in self-supervised pretraining using unlabeled data have shown significant benefits for downstream tasks.

View Article and Find Full Text PDF

Cross-modal hashing aims to leverage hashing functions to map multimodal data into a unified low-dimensional space, realizing efficient cross-modal retrieval. In particular, unsupervised cross-modal hashing methods attract significant attention for not needing external label information. However, in the field of unsupervised cross-modal hashing, there are several pressing issues to address: (1) how to facilitate semantic alignment between modalities, and (2) how to effectively capture the intrinsic relationships between data, thereby constructing a more reliable affinity matrix to assist in the learning of hash codes.

View Article and Find Full Text PDF