Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Anharmonicity strongly influences the absorption and emission spectra of polycyclic aromatic hydrocarbon (PAH) molecules. Here, IR-UV ion-dip spectroscopy experiments together with detailed anharmonic computations reveal the presence of fundamental, overtone, as well as 2- and 3-quanta combination band transitions in the far- and mid-infrared absorption spectra of phenylacetylene and its singly deuterated isotopologue. Strong absorption features in the 400-900 cm-1 range originate from CH(D) in-plane and out-of-plane wags and bends, as well as bending motions including the C≡C and CH bonds of the acetylene substituent and the aromatic ring. For phenylacetylene, every absorption feature is assigned either directly or indirectly to a single or multiple vibrational mode(s). The measured spectrum is dense, broad, and structureless in many regions but well characterized by computations. Upon deuteration, large isotopic shifts are observed. At frequencies above 1500 cm-1 for d1-phenylacetylene, a one-to-one match is seen when comparing computations and experiments with all features assigned to combination bands and overtones. The C≡C stretch observed in phenylacetylene is not observed in d1-phenylacetylene due to a computed 40-fold drop in intensity. Overall, a careful treatment of anharmonicity that includes 2- and 3-quanta modes is found to be crucial to understand the rich details of the infrared spectrum of phenylacetylene. Based on these results, it can be expected that such an all-inclusive anharmonic treatment will also be key for unraveling the infrared spectra of PAHs in general.

Download full-text PDF

Source
http://dx.doi.org/10.1063/5.0191404DOI Listing

Publication Analysis

Top Keywords

spectrum phenylacetylene
8
deuterated isotopologue
8
phenylacetylene
5
infrared absorption
4
absorption spectrum
4
phenylacetylene deuterated
4
isotopologue mid-
4
mid- far-ir
4
far-ir anharmonicity
4
anharmonicity influences
4

Similar Publications

Ion Spectroscopy in the Context of the Diffuse Interstellar Bands: A Case Study with the Phenylacetylene Cation.

ACS Earth Space Chem

December 2024

School of Chemistry, The University of Edinburgh, Joseph Black Building, David Brewster Road, King's Buildings, Edinburgh EH9 3FJ, Scotland, U.K.

Identification of the molecular carriers of diffuse interstellar bands (DIBs) requires gas phase electronic spectra of suitable candidate structures. Recording the spectra of these in the laboratory is challenging because they include large, carbon-rich molecules, many of which are likely to be ionic. The electronic spectra of ions are often obtained using action spectroscopy methods, which can induce small perturbations to the absorption characteristics and hinder comparison with astronomical observations.

View Article and Find Full Text PDF

A luminescent Ag(DPPY)(PhCC) cluster with a triangular superatomic Ag core.

Nanoscale

April 2024

Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.

We have synthesized single crystals of a highly stable Ag nanocluster protected by six ligands of diphenyl-2-phosphinic pyridine (DPPY) plus six ligands of phenylacetylene (PhCC). This Ag(DPPY)(PhCC) cluster bears a triangular superatomic Ag core, with the vertex and edge Ag atoms (quasi-triangle Ag) being protected by both P and N bidentate coordination of the six DPPY ligands; meanwhile, the six PhCC ligands μ-C coordination form coordination on the two central Ag atoms capped on both sides of the triangle facet. Apart from the well-organized coordination of the two ligands pertaining to the balanced interactions with the Ag core, this Ag nanocluster exhibits superatomic stability with two delocalized valence electrons (1S||1P), assuming that the six PhCC ligands fix 6 localized electrons from the Ag atoms.

View Article and Find Full Text PDF

Anharmonicity strongly influences the absorption and emission spectra of polycyclic aromatic hydrocarbon (PAH) molecules. Here, IR-UV ion-dip spectroscopy experiments together with detailed anharmonic computations reveal the presence of fundamental, overtone, as well as 2- and 3-quanta combination band transitions in the far- and mid-infrared absorption spectra of phenylacetylene and its singly deuterated isotopologue. Strong absorption features in the 400-900 cm-1 range originate from CH(D) in-plane and out-of-plane wags and bends, as well as bending motions including the C≡C and CH bonds of the acetylene substituent and the aromatic ring.

View Article and Find Full Text PDF

The threshold photoionization and dissociative ionization of benzonitrile (CHCN) were studied using double imaging photoelectron photoion coincidence (PEPICO) spectroscopy at the Vacuum Ultraviolet (VUV) beamline of the Swiss Light Source (SLS). The threshold photoelectron spectrum was recorded from 9.6 to 12.

View Article and Find Full Text PDF

Vibrational spectra in the acetylenic and aromatic C-H stretching regions of phenylacetylene and fluorophenylacetylenes, viz., 2-fluorophenylacetylene, 3-fluorophenylacetylene, and 4-fluorophenylacetylene, were measured using the IR-UV double resonance spectroscopic method. The spectra, in both acetylenic and aromatic C-H stretching regions, were complex exhibiting multiple bands.

View Article and Find Full Text PDF