Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Transition metal dichalcogenides (TMDCs) represent a well-known material family with diverse structural phases and rich electronic properties; they are thus an ideal platform for studying the emergence and exotic phenomenon of superconductivity (SC). Herein, we propose the existence of tetragonal TMDCs with a distorted Lieb (Lieb) lattice structure and the stabilized transition metal disulfides (MS), including Lieb-ZrS, Lieb-NbS, Lieb-MnS, Lieb-FeS, Lieb-ReS, and Lieb-OsS. Except for semiconducting Lieb-ZrS and magnetic Lieb-MnS, the rest of metallic Lieb-MS was found to exhibit intrinsic SC with the transition temperature () ranging from ∼5.4 to ∼13.0 K. The of Lieb-ReS and Lieb-OsS exceeded 10 K and was higher than that of the intrinsic SC in the known metallic TMDCs, which is attributed to the significant phonon-softening enhanced electron-phonon coupling strength. Different from the Ising spin-orbit coupling (SOC) effect in existing non-centrosymmetric TMDCs, the non-magnetic Lieb-MS monolayers exhibit the Dresselhaus SOC effect, which is featured by in-plane spin orientations and will give rise to the topological SC under proper conditions. In addition to enriching the structural phases of TMDCs, our work predicts a series of SC candidates with high intrinsic and topological non-triviality used for fault-tolerant quantum computation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d4mh00141a | DOI Listing |