A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Role of pea protein isolate in modulating pea starch digestibility: insights from physicochemical and microstructural analysis. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: Understanding the interactions between protein and starch is crucial in revealing the mechanisms by which protein influences starch digestibility. The present study investigated the impact of different contents of pea protein isolate (PPI) on the physicochemical properties and digestibility of pea starch (PS).

Results: The results demonstrated that as the content of PPI increased from 0% to 12%, and the digestion of PS decreased by 12.3%. Rheological analysis indicated that PPI primarily interacted with molecular chains of PS through hydrogen bonds. Increasing the content of PPI resulted in a 30.6% decrease in the hardness of the composite gels, accompanied by a 10% reduction in the short-ordered structure of PS. This hindered the formation of molecular aggregation and resulted in a loose and disordered gel network structure. The microstructure confirmed that the attachment of PPI to PS served as a physical barrier, impeding starch digestibility.

Conclusion: In summary, the primary mechanism by which PPI inhibited PS digestion involved steric hindrance exerted by PPI and its interaction with PS via hydrogen bonds. These findings contribute to a better understanding of the interaction mechanisms between PS and PPI and offer insights for the optimal utilization of pea resources. © 2024 Society of Chemical Industry.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jsfa.13468DOI Listing

Publication Analysis

Top Keywords

pea protein
8
protein isolate
8
pea starch
8
starch digestibility
8
ppi
8
content ppi
8
hydrogen bonds
8
starch
5
role pea
4
protein
4

Similar Publications