A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Artificial intelligence predicts undiagnosed atrial fibrillation in patients with embolic stroke of undetermined source using sinus rhythm electrocardiograms. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: Artificial intelligence (AI)-enabled sinus rhythm (SR) electrocardiogram (ECG) interpretation can aid in identifying undiagnosed paroxysmal atrial fibrillation (AF) in patients with embolic stroke of undetermined source (ESUS).

Objective: The purpose of this study was to assess the efficacy of an AI model in identifying AF based on SR ECGs in patients with ESUS.

Methods: A transformer-based vision AI model was developed using 737,815 SR ECGs from patients with and without AF to detect current paroxysmal AF or predict the future development of AF within a 2-year period. Probability of AF was calculated from baseline SR ECGs using this algorithm. Its diagnostic performance was further tested in a cohort of 352 ESUS patients from 4 tertiary hospitals, all of whom were monitored using an insertable cardiac monitor (ICM) for AF surveillance.

Results: Over 25.1-month follow-up, AF episodes lasting ≥1 hour were identified in 58 patients (14.4%) using ICMs. In the receiver operating curve (ROC) analysis, the area under the curve for the AI algorithm to identify AF ≥1 hour was 0.806, which improved to 0.880 after integrating the clinical parameters into the model. The AI algorithm exhibited greater accuracy in identifying longer AF episodes (ROC for AF ≥12 hours: 0.837, for AF ≥24 hours: 0.879) and a temporal trend indicating that the AI-based AF risk score increased as the ECG recording approached the AF onset (P for trend <.0001).

Conclusions: Our AI model demonstrated excellent diagnostic performance in predicting AF in patients with ESUS, potentially enhancing patient prognosis through timely intervention and secondary prevention of ischemic stroke in ESUS cohorts.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.hrthm.2024.03.029DOI Listing

Publication Analysis

Top Keywords

artificial intelligence
8
atrial fibrillation
8
fibrillation patients
8
patients embolic
8
embolic stroke
8
stroke undetermined
8
undetermined source
8
sinus rhythm
8
ecgs patients
8
≥1 hour
8

Similar Publications