A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Post-hoc standardisation of parametric T1 maps in cardiovascular magnetic resonance imaging: a proof-of-concept. | LitMetric

Post-hoc standardisation of parametric T1 maps in cardiovascular magnetic resonance imaging: a proof-of-concept.

EBioMedicine

Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, ECRC Experimental and Clinical Research Center, Lindenberger Weg 80, 13125 Berlin, Germany; Working Group on Cardiovascular Magnetic Resonance, Experimental and Clinical Researc

Published: April 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: In cardiovascular magnetic resonance imaging parametric T1 mapping lacks universally valid reference values. This limits its extensive use in the clinical routine. The aim of this work was the introduction of our self-developed Magnetic Resonance Imaging Software for Standardization (MARISSA) as a post-hoc standardisation approach.

Methods: Our standardisation approach minimises the bias of confounding parameters (CPs) on the base of regression models. 214 healthy subjects with 814 parametric T1 maps were used for training those models on the CPs: age, gender, scanner and sequence. The training dataset included both sex, eleven different scanners and eight different sequences. The regression model type and four other adjustable standardisation parameters were optimised among 240 tested settings to achieve the lowest coefficient of variation, as measure for the inter-subject variability, in the mean T1 value across the healthy test datasets (HTE, N = 40, 156 T1 maps). The HTE were then compared to 135 patients with left ventricular hypertrophy including hypertrophic cardiomyopathy (HCM, N = 112, 121 T1 maps) and amyloidosis (AMY, N = 24, 24 T1 maps) after applying the best performing standardisation pipeline (BPSP) to evaluate the diagnostic accuracy.

Findings: The BPSP reduced the COV of the HTE from 12.47% to 5.81%. Sensitivity and specificity reached 95.83% / 91.67% between HTE and AMY, 71.90% / 72.44% between HTE and HCM, and 87.50% / 98.35% between HCM and AMY.

Interpretation: Regarding the BPSP, MARISSA enabled the comparability of T1 maps independently of CPs while keeping the discrimination of healthy and patient groups as found in literature.

Funding: This study was supported by the BMBF / DZHK.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10951905PMC
http://dx.doi.org/10.1016/j.ebiom.2024.105055DOI Listing

Publication Analysis

Top Keywords

magnetic resonance
12
resonance imaging
12
post-hoc standardisation
8
parametric maps
8
cardiovascular magnetic
8
maps
6
hte
5
standardisation parametric
4
maps cardiovascular
4
imaging proof-of-concept
4

Similar Publications